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Abstract. Non-linear modeling based on limited samples is a difficult problem. In-
corporating a prior knowledge to this type of problem might offer a promising solution.
Various techniques have been proposed to incorporate prior knowledge but depend on one
optimal solution which subject to pre-selection of coefficients. Incorporating the knowl-
edge based on Pareto optimality concept offers simple post-selection of solutions. Yet,
the proposed Pareto optimality concept may trap to either under-fitting or over-fitting
problem based on the obtained Pareto front. The focus of this study is primarily to im-
prove the initialization of the chromosome in order to obtain a reliable Pareto front. One
system identification of control engineering problem is used as a problem to be validated.
It is shown that the proposed technique is possible to be implemented by capturing the
best solution in the obtained Pareto front and relatively improve the accuracy up to 8%
performance of the prediction.
Keywords: Pareto optimality, Prior knowledge, Small samples, System identification

1. Introduction. Obtaining adequate data samples is necessary for model generalization
especially in a context of the regression problem. However, the data samples collection is
costly and time consuming. Recently, the application of learning from small samples has
gained increasing attention in many fields, such as in semiconductor biological studies [1],
and engine control simulation [2]. There are numerous techniques in machine learning for
solving regression problem. However, most of the available techniques mainly focus on
solving sufficient training samples problem. Incorporating a prior knowledge is a plausible
method in facilitating the data-driven technique to improve the quality of the model.

In general, the existing methods in incorporating prior knowledge rely on one optimal
solution which requires the pre-selection of coefficients in formulating the learning function
of the regression algorithm [2]. As a result, the existing approaches may simply ignore the
possible consequences of the pre-selection of coefficients as limited knowledge is accessible.
In view of this limitation, an alternative method to incorporate prior knowledge based on
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Pareto optimality has been proposed [3]. Yet, the proposed technique suffers from various
problems such as uncertainty of obtained Pareto front and complexity of the problem
space.

In this study, the improvement will be based on finding the best setting and reliable
Pareto front. The chromosome initialization based on genetic algorithm (GA) multi-
objective technique is not randomly initialized but based on regularization function in
order to obtain the best setting. Also, obtaining a reliable Pareto is performed by in-
troducing and archive through series of runs before obtaining the Pareto front through
non-dominated sorting.

The next section briefly describes the employed techniques in this study. Section 3
explains the details of the proposed technique. The experimental setup, results and dis-
cussions are presented in Section 4. Finally, Section 5 is the conclusions.

2. Employed Techniques. The weighted kernel regression (WKR) [4] is introduced to
solve small sample problems by mapping the input data into the kernel space. Given
training samples, S = {si : Xi, yi|i = 1, 2, . . . , n}, where Xi, Xi ∈ ℜd is used to denote
the input space (independent variable(s)), yi, yi ∈ ℜ is used to denote the output domain
(dependent variable), where d refers to the dimensional size of the input space, and n is
the number of available training samples. The input mapping is an important element to
be used in the proposed technique to transform the linear observed samples to non-linear
problems and facilitates the non-linear modeling. In general, WKR required a training
stage, i.e., weight estimation before predicting the test sample based on Equation (1)

min f(α) ⇔ min ∥K (X, X) α − y∥2 (1)

where K(X, X) is a square matrix, α is a weight parameter to be estimated and y is the
given target output.

Incorporating ridge regression (RR) to WKR was first introduced in [5] to extend the
capability of WKR when dealing with noisy samples. The RR is introduced in WKR by
adding the L2 regularization term to Equation (1) as given in Equation (2) in order to
avoid the singular matrix problem [6]. This is also to ensure a lower variance model by
compromising between solving the equation and at the same time keep the α small.

freg(α) = ∥K(X,X)α − y∥2 + λ∥α∥2 (2)

where λ is a positive constant value. Differentiating Equation (2) with respect to α gives
the closed form solution in estimating the weight parameter as given in Equation (3).

αridge =
[
K(X, X)T K(X, X) + λI

]−1
K(X, X)T y (3)

where αridge, αridge ∈ ℜn×1, is the estimated parameters in WKR-RR, and λ is a pre-
defined value to control the generalization of the regressed function. In this study,
WKR-RR plays an important role in initializing the population of the chromosome in
obtaining the Pareto front. Once the weight parameter is obtained, the model is ready
to predict any unseen samples (test samples). The testing samples are denoted by T =
{tq : Xtest,q, ytest,q|q = 1, 2, . . . , l}, where Xtest,q, Xtest,q ∈ ℜd is used to denote input space,
ytest,q, ytest,q ∈ ℜ is output space for testing sets, and l is the number of testing samples.

In general, a multi-objective optimization algorithm (MOEA) consists of several ob-
jectives that are conflicting with one another and the aim is to optimize each of them
simultaneously. This is the primary feature to be utilized in the proposed technique.
There exist various MOEAs in literature. As non-dominated sorting genetic algorithm
II (NSGA-II) offers a better spread of solutions, converge better in the obtained Pareto
front through a diversity preservation mechanism [7]. Thus, we employed the NSGA-II
in the proposed technique. However, the NSGA-II is prone to high uncertainty due to
the stochastic nature of the algorithm which may cause unreliable Pareto front for small
dataset problem.
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Figure 1. Framework of the proposed technique in incorporating prior knowledge

3. Proposed Technique. In this section, the framework of the proposed technique will
be explained based on Figure 1. Prior to the explanation of the proposed technique,
another important notations are introduced. Prior knowledge as an additional information
is defined as follows:

R =
{
rip : Xpr,ip , ypr,ip |ip = 1, 2, . . . , np

}
(4)

where Xpr,ip , Xpr,ip ∈ ℜd refers to the input space and ypr,ip , ypr,ip ∈ ℜ refers to the output
space. ip and np refer to the ith-index and the number of prior knowledge, respectively.

The proposed technique consists of three main blocks: (1) smoothing parameter es-
timation, (2) kernelizing and (3) weight parameter estimation. A similar process as in
WKR [8] except the proposed technique deals with two conflicting objective functions.

3.1. Formulation of learning functions. The formulation of bi-objective learning
function is derived based on the available training samples and prior samples. The first
and second formulated bi-objective learning functions, f1 and f2, are given in Equation
(5) and Equation (6)

f1(W ) = arg min
W

[
1/nctrain

1

(
K(Xc, X)TW − Y

)2

+1/npc
train
2

(
K(Xc, Xpr)

TW − Ypr

)2
] (5)

f2(W ) = arg min
W

[
1/npc

prior
1

(
K(Xc, Xpr)

TW − Ypr

)2

+1/ncprior
2

(
K(Xc, X)TW − Y

)2
] (6)

where K(Xc, X) maps the available training samples based on the combined samples from
ℜn×d to ℜnt×n, Y is the output domain value for training samples, K (Xc, Xpr) maps the
available prior knowledge based on the combined samples from ℜnp×d to ℜnt×np , Ypr is
the output domain value for prior knowledge, W , W ∈ ℜnt×1 refers to weight parameters
value to be estimated, and ctrain

1 and ctrain
2 are the two coefficients to be pre-defined,

where ctrain
1 + ctrain

2 = 1. The needs of 1/n and 1/np are to normalize the two terms of
the formulated first bi-objective learning function which is important in obtaining the
intended solution.
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3.2. Estimation of weight parameters using NSGA-II. Once the bi-objective learn-
ing function is formulated, the weight parameter, W is ready to be estimated. Initially,
the NSGA-II parameters, λ value, and number of runs, r have to be defined. The NSGA-II
parameters including population size, number of generation, probability of cross-over, pc,
and probability of mutation, pm are defined to execute the algorithm in obtaining Pareto
front. Meanwhile, the determination of λ value is primarily introduced to initialize the
population of the chromosome in NSGA-II. The number of runs, r is defined to iteratively
execute NSGA-II to reduce the uncertainty in obtaining good and reliable Pareto front.

Once the initialization of the involved parameters is defined, there are two main pro-
cesses involved in this second phase of the weight parameter estimation block. The first
process is introduced to find the best setting of λ value in initializing the chromosome
population of the NSGA-II in avoiding the obtained Pareto front to be trapped either in
globally or locally Pareto front. Therefore, in this first process, the population initializa-
tion is introduced based on WKR as given in Equation (7)

Winit =
(
KT

c Kc + λI
)−1

KT
c Yc (7)

Meanwhile, the second process is introduced to find a reliable and good Pareto front
by utilizing the obtained best setting in the previous process through several runs.

4. Experimental Setup, Results and Discussion. This section demonstrates the fea-
sibility and effectiveness of the proposed technique to solve system identification problem
of control engineering problem. There exist several techniques to perform the system iden-
tification which focus on the data-driven approaches such as Artificial Neural Networks
(ANNs) [9], and Adaptive Neuro-Fuzzy Inference System (ANFIS) [10].

In this study, PT 326 Process Trainer models is used as a benchmark problem. The
device’s function is like a hair dryer [10]. The air is flowing in the tube by a centrifugal
blower and heated at the inlet. The heated passes through a heater grid before being
released into the outlet and measured by a thermocouple. The input, u(k) is the voltage
over a mesh of resistor wires to heat incoming air and the output, v(k), is the outlet air
temperature. Figure 2 illustrates a block diagram model of the PT 326 Process Trainer.

Firstly, the experimental dataset is obtained from [10,11]. As in [10], the dataset was
divided into two sets: (1) training samples (k = 1 to 300), S and (2) testing samples
(k = 301 to 600), T . The input is partitioning into two disjoint sets:

input =

{
V = (v(k − 1), v(k − 2), v(k − 3), v(k − 4))
U = (u(k − 1), u(k − 2), u(k − 3), u(k − 4), u(k − 5), u(k − 6))

(8)

In this study, input space of the training samples, X = {v(k − 1), v(k − 2), u(k − 3)}
and the corresponding output space Y = v(k) are selected similarly to [10]. Meanwhile,
the simulation data is generated through the Simulink in Matlab by keeping a similar
parameter setup as in real experiment. Therefore, the input data to the simulation block

Figure 2. Block diagram of the PT326 Process Trainer
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Table 1. Parameter settings for the conducted experiment of the proposed technique

Parameter Values

WKR Parameter h = max
(
∥Xk+1∥2 − ∥Xk∥2

)
where 1 < k < n − 1 and ∥Xk+1∥2 > ∥Xk∥2

NSGA-II ctrain
1 = 1−ctrain

2 , ctrain
2 = 1e−5, cprior

1 = 1−cprior
2 , cprior

2 = 1e−5, ξ = 0.1,

Parameters population size = 100, generation = 100 and iteration, r = 10

Table 2. RMSE of four different models

Model/Number of
10 50 100 150 200 250 300

Training Samples
Mixed Model 0.1355 0.1051 0.0913 0.0897 0.0845 0.0780 0.0739
Train Model 0.8977 0.1269 0.0856 0.0727 0.0634 0.0555 0.0505

Proposed Model 0.1341 0.0618 0.0611 0.0512 0.0511 0.0488 0.0483
Jang [10] – – – – – – 0.0524

was chosen to be a pseudo random binary signal (PRBS) shifting between 3.5 V and 6.5
V. A similar input selection and output selection as in experimental dataset are employed
in determining the prior knowledge.

Seven experiments are conducted with different number of experimental data with fixed
number of simulation data. The seven different number of experiment data is assigned
as follows, n = {10, 50, 100, 150, 200, 250, 300} at one particular number of simulation
data, np = 50. The objective of fixing the number of simulation data is to investigate
the importance of the simulation data as the experimental data is increased to maximum
samples number. Common parameter’s settings for the proposed technique are given in
Table 1.

As in [10], the same testing samples are used in validating the proposed model. The
quality performance of train model, mixed model to our proposed model is compared.
This is to emphasize the need of prior knowledge and how to treat the training samples
and prior knowledge in dealing with small sample problem. The train model is developed
by using Equation (2) on the training samples only, and a mixed model is developed
by Equation (2) on the training samples simply extended with the prior knowledge. The
performance of the proposed model is also specifically compared to ANFIS [10] at n = 300.

In all experiments, root mean squared error (RMSE) is used as performance index. The
same parameter settings as given in Table 1 are employed to perform all models except
Jang model [10]. The quality performance for every model is tabulated in Table 2. In
general, the available prior knowledge considerably improved the regression quality as it
covers a wider region of the input space especially when the experimental data is small.
However, the mixed model only recorded very little improvement in terms of RMSE even
though number of training samples is increased. The mixed model is simply averaging
the available information from the prior knowledge. Lastly, the proposed technique also
recorded a slight improvement of the testing accuracy which is up to 8% as compared to
[10] at n = 300.

5. Conclusions. An adequate sample is important besides an appropriate hypothesis
for model generalization. Usually the data sampling process is time-consuming and cum-
bersome. One of the plausible methods to address the problem is by incorporating prior
knowledge in facilitating the model generalization. In this study, the proposed technique
based on Pareto optimality concept by improving the uncertainty of obtained Pareto front
and complexity of problem space offers an improvement to obtain a reliable Pareto front.
However, the use of prior knowledge is shown to be inappropriate with larger samples but
significantly important for small sample problems. Finally, in future, the selection of best



26 M. I. SHAPIAI, Z. IBRAHIM, A. ADAM AND N. MOKHTAR

solution will be investigated and refinement of weight estimation process will be further
improved. Also, the generation of artificial samples from the obtained Pareto front will
be investigated.
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