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Abstract. For solving inverse kinematics problem of robotics serial manipulators, a
solution of fuzzy control ant colony algorithm is put forward. That is to say, the in-
verse kinematics problem is transformed into the multidimensional function maximum
problem, and the independent variables of multidimensional function are gridded. Fuzzy
control ant colony algorithm makes a ‘path-planning’ on the gridded multidimensional
domain of the function, which is transformed into a new multidimensional function op-
timization algorithm. The improvement of the conventional ant colony algorithm with
fuzzy control intelligent pheromone updating method successfully increases convergence,
accuracy and heuristic of the algorithm. A practical inverse kinematics experiment of
6 freedom structure robotics manipulator is made, of which goal forward matrix to real
forward matrix
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can be below 0.1 precision in 100 iterations, and the devia-

tion between them will be less with increased iterations. Therefore, practice has proved
that the feasible method of solving robotics multi-freedom manipulators inverse kinemat-
ics problem is presented by this paper.
Keywords: Inverse kinematics, Fuzzy control ant colony algorithm, Multidimensional
function optimization, Robotics manipulator, Independent variables gridded

1. Introduction. Research of robot arm control is to study the two problem – forward
kinematics and inverse kinematics. There are a variety of forward kinematics problem
solving methods, and one of them that is the most simple and effective is Denavit and
Hartenberg Notation [1,2], which is a general solving method proposed in 1955. How-
ever, there are ever-changing methods of solving inverse kinematics problem and different
structure of the robot arm even has its own unique solution, still not having one gen-
eral approach. Inverse kinematics problem is different from forward kinematics problem,
mainly because of the nonlinear kinematic equations, it is difficult to obtain closed-form
solutions, as well as the existence of solutions and the problem of multiple solutions.
Common methods of solving inverse kinematics problem are geometric method, the ma-
trix inversion method, the Lie algebra method and intelligent optimization algorithms,
etc. The first three methods for most of complex mechanical structure of manipulators,
the solution cannot be found because of its algorithm limitation [1,3]. Intelligent op-
timization algorithm has been in high hopes, and some intelligent algorithms become
examples of the successful resolution of the robot arm inverse kinematics problem, such
as genetic algorithm [4,5], and neural network algorithm [6,7]. However, genetic algorithm
is essentially a non-heuristic optimization algorithm, and non-heuristic offspring cannot
solve complex multi-DOF robot arm inverse kinematics problem in ideal. Neural network
algorithm has limitations for the complex structure of robot arm in data acquisition and
training, and it is difficult to train neural network function accurately. Therefore, this
paper presents a new intelligent optimization algorithm, which uses fuzzy control [8,9] to
improve ant colony algorithm [10,11] to solve the problem of inverse kinematics.
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2. Fuzzy Ant Colony Algorithm for the Inverse Kinematics.

2.1. Establishment of fuzzy ant colony algorithm objective function. Conversion
Formula (1) from D-H Notation method to the Cartesian coordinate system based on
rotation and translation theory [1] is:
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where sθi
refers to sin(θi), cθi

refers to cos(θi), sαi
refers to sin(αi), and cαi

refers to
cos(αi). The target robot arm joint structure is known, so D-H Notation parameters are
known. According to Formula (1), n degrees of freedom forward kinematics equation can
be built as Equation (2) shows
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Set target matrix T as follows:
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Solving inverse kinematics problem needs to meet two conditions, namely: (1) θ joints

meet the actual range of motion allowed; (2) to find θ = [θ1, θ2, θ3, · · ·, θn]T makes An

so close to target matrix T . According to the above conditions, the establishment of a
bounded continuous objective function F is:

F =
1

1 + ‖An − T‖1

+ C1 + C2 + · · ·+ Cn; if θn ∈ θrange
n then Cn = 1, or Cn = 0 (4)

where θrange
n is joint n actual permit range of motion, and T is a known matrix of each

element in the clear target point and grabbing condition. In this way, Equation (4)

establishes a matrix function of θ = [θ1, θ2, θ3, · · · , θn]T , and the range of F is (0, n + 1].
If and only if F = n + 1, i.e., ‖An − T‖1 = 0 and C1; C2; · · · ; Cn = 1 (i.e., θ in the
allowed condition of the actual joint range of motion), it happens to be the optimal θ
for inverse kinematics problem solution. Therefore, objectives can be transformed into
finding θ corresponding to the maximum value of the F -function.

2.2. The path-planning of fuzzy ant colony algorithm. Firstly, maximum problem
of the F -function of variable θ = [θ1, θ2, θ3, · · · , θn]T is transformed into ant colony algo-
rithm “path-planning” problem. As shown in Figure 1, each variable in θ is to establish
a grid net 10 × d (d is the ranging accuracy of the variable). For example, in Figure 1,
variable θ1 establishes a 10 × 5 grid net, and the provisions of each column grid points
have numbers of 0-9, each variable sign column is regarded as the sign bit of the variable,
and then the θ1 values from −9.999 to 9.999. Connect the variables θ1 to θn together, and
add Start, Destination points in both ends of the grid net, and a diagram of 10 × (d×n)
lattice points of θ can be obtained as shown in Figure 1. And the numbered grid points
are feasible.

If you let the ant K from the Start point position always follow through each grid point
to reach the Destination point position, shown in Figure 1, you can get a set of digital
information about each grid points, namely: 4739303528. . . 15933. Thus, decoding can be
established by formula below:

θq = (−1)θ(i,1+d·(q−1)) ·
d−1
∑

k=0

θ (i, 2 + d · (q − 1) + k) · 10−k (5)
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where θ (i, j) is the grid net with numbers from Start to Destination, such as, θ (3, 4) = 2.
q = 1, 2 . . . , n, i = 1, 2, . . . , 10, j = 1, 2, . . . , 10× d, d is the variable accuracy, as shown in
Figure 1, d = 5. According to the decoding Formula (5), the path corresponding to each
variable in Figure 1 can be decoded respectively as follows:

θ1 = (−1)4 · (7 × 100 + 3 × 10−1 + 9 × 10−2 + 3 × 10−3) = 7.393

θ2 = (−1)0 · (3 × 100 + 5 × 10−1 + 2 × 10−2 + 8 × 10−3) = 3.528

. . .

θn = (−1)1 · (5 × 100 + 9 × 10−1 + 3 × 10−2 + 3 × 10−3) = −5.933

The combination of the decoded variables can get a set of θ = [θ1, θ2, θ3, · · · , θn]T . Vis-
iblily, as long as any ant from Start position on the grid net reaches the Destination
position can be decoded by Equation (5) to obtain a set of variables solution. Therefore,

seeking F Maximization on θ = [θ1, θ2, θ3, · · · , θn]T is equivalent to the path-planning
problem in Figure 1. Secondly, the establishment of the transition function of fuzzy ant
colony algorithm. Each ant K transfers from the grid point of the j-th column to the grid
point of the c-th with transition function probability formula as follows:

P k
(i,j;r,c) =

τ(i,j;r,c)

10
∑

r=1

τ
(i,j;r,c)

(6)

where i, r = 0, 1, . . . , 9, c = j + 1, j = 0, 1, . . . , (d× n + 2), τ(i,j;r,c) is the pheromone value
of ant k from the grid point θ (i, j) to the grid point θ (r, c). Finally, updating methods
of the pheromone τ(i,j;r,c) can be classified into local and global two sorts. Local updating
method is that each ant K takes every step grid point to update once, and formula is:

τnew
(i,j;r,c) = (1 − ρ) · τ old

(i,j;r,c) + ρ · Tau (7)

where ρ is local pheromone evaporation factor, and Tau is local pheromone carrying
capacity of each ant K, and Tau size value cooperates with global updating Q size value.
Global updating method is that the optimal path among each group of ants path-planning
is selected (F function takes the optimal solution). The pheromone updating method is
every step of the path from Start to Destination. Global updating formula is:

τnew
(i,j;r,c) = (1 − α) · τ old

(i,j;r,c) + Q (8)

where α is global pheromone evaporation factor, and Q is the global updating carrying
amount of fuzzy pheromone. Because this parameter is very important, the paper uses

Figure 1. n element meshing function arguments
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fuzzy reasoning methods to control Q value of each time in order to get reasonable values.
Q has two parameters determining its amount of value. The first one is NC the ant colony
algorithm iteration, and the second one is the result of each set of ants in optimal path-
planning decoded into the objective function F value. At the beginning of the pheromone
updating, if the Q value is too large, ant colony algorithm will be quickly into local
optimum; if the Q value is set too low, the ant colony algorithm convergence speed is too
slow. So the best way is to set the Q value smaller when NC is less, and the Q value
larger when NC is larger. If you have an ant’s path very close to the maximum value of
the objective function decoded, the Q value of the ant would be the bigger, which makes
next ant choose this path in all probability. Making optimization again on this path by
next ant can improve the convergence speed. The provision of the number of iterations
NC and the value of the objective function F decoded by the optimal path are regarded
as fuzzy inputs, Q as the fuzzy output, and then a fuzzy inference rule shows in Table 1.
The global nature of Gaussian function [8] is smooth, so Gaussian function is used for the
input and output membership functions.

Mamdani reasoning is applied to fuzzy reasoning, shown in Figure 2.

Table 1. Fuzzy inference table

Q FS FM FB
NCS QS QS QM
NCM QS QS QM
NCB QS QS QB
References: S is small, M is middle, and B is big

Figure 2. Fuzzy pheromone reasoning

2.3. Inverse kinematics solution steps of fuzzy ant colony algorithm.
Step 1 Objective function F constructed, the n variables of the objective function

gridded, parameters initialized for α, ρ, d, Max Iter (maximum iterations), Tau, fuzzy
inference variable Q each group with ant amount m, k = 1, Iter = 1.

Step 2 Beginning from the Start point, according to the probability of ant k transition
Equation (6) selecting the next point of the grid.

Step 3 Local updating according to Formula (7).
Step 4 If the ant k reaches the Destination point, according to Equation (5) calculate

the decoded F value, k = k +1, otherwise, continue to follow the probability of transition
Equation (6) to select the next column grid point and proceed with Step 3.

Step 5 If k = m, then the optimal path corresponding to F value is selected in the
group of m ants, according to Equation (8), Globally update this path, Iter = Iter + 1,
or the process moves to Step 2.

Step 6 If Iter = Max Iter, then output the result of the F value corresponding to the
optimal set of ants, otherwise k = 1, transfer to Step 2.
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3. Robotic Arm Inverse Kinematics Experiment.

3.1. Forward kinematics for robotic arm. A 6 DOF physical mechanical arm is as
Figure 3 shows. Sketch frames and D-H parameter table are established in Figure 4 and
Table 2 according to the D-H Notation.

Figure 3. 6 DOF arms control physical picture

Figure 4. 6 degrees of freedom arm frames

Table 2. D-H parameter table

Jointi−1 ai (cm) αi di (cm) θi Joints limitation (rad)
1 0 0 10 θ1 0 ∼ π
2 0 −π/2 0 θ2 0 ∼ π
3 12.5 0 0 θ3 −π/2 ∼ 0
4 10 0 0 θ4 −π/2 ∼ π/2
5 3 π/2 0 θ5 0 ∼ π/2
6 0 0 15 θ6 −π/2 ∼ π/2
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3.2. Fuzzy ant colony algorithm inverse kinematics for robotic arm. Under the
base frame, the target grabbing point is set P = (3, 0, 47.5), and set base coordinate
system rotation θ1 = 0; θ6 wrist rotation is set θ6 = π/2; target matrix T can be obtained,
according to the Cartesian coordinate system. Therefore, inverse kinematics problem in
the real environment can be transformed into an inverse solution of 4 joints θ2, θ3, θ4, θ5.
According to Equation (4), establishing an objective function F , set α = 0.8; ρ = 0.8;
d = 6. Take the maximum iterations Max Iter = 1000, and there are m = 20 ants in
each group, Tau = 0.01; Gaussian membership function is taken in fuzzy control, and NC
membership ranges [0, 1000], and F ranges (0, 4 + 1]. The fuzzy membership pheromone
increment Q ranges [0, 1], and the fuzzy inference rules are as Table 1 shows. According
to realistic joints limitation in Table 2, the optimal solution of iterations 1000 is obtained
in Table 3.

Table 3. Fuzzy ant colony optimization results

‖A6 − T‖1 θ2 θ3 θ4 θ5

0.0890 0.0034 −1.5700 0.0021 1.5701

The robot arm forward kinematics matrix equation A6 can be obtained by Equation
(1) and Equation (2), according to the D-H Notation in Table 2. With the number of
iterations increasing, ‖A6 − T‖1 optimization trend is shown in Figure 5, and the specific
optimization computing time and convergence are in Table 4.

Figure 5. Fuzzy ant colony algorithm optimization in trends

Table 4. The convergence computing time table

Iterations 100 400 700 1000
Run time (s) 0.38 0.82 1.77 2.42
‖A6 − T‖1 0.0977 0.0921 0.0890 0.0890

4. Conclusions. The algorithm using heuristic characteristics of ant colony algorithm,
plus putting inspired pheromone factor with intelligent fuzzy control, effectively improves
the convergence, heuristic and stability of the algorithm and successfully solves the prob-
lem of complex multi-degree robot arm inverse kinematics equation. Thus, the proposed
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algorithm provides a general method of solving the inverse kinematics problem for any
complex multi-DOF robot arm. Future study direction is using this method to make
robot arm avoid obstacles under circumstances to reach a target, and it will be even more
promising.
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