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Abstract. A new chaotic system is found by feedback controlling method in this paper.
The Lyapunov exponents of the system, chaotic behavior and the stability at equilibrium
points are studied. Based on feedback controlling method, a nonlinear feedback controller
is designed for the novel system. In addition, according to Lyapunov stability theory, the
sufficient condition for stabilizing chaos to unstable equilibria is obtained. The theoretical
analysis and simulation results are given to show the effectiveness of the method.
Keywords: New chaotic system, Feedback controlling method, Lyapunov exponents,
Lyapunov stability theory

1. Introduction. Since Lorenz found the first chaotic attractor [1] in a smooth three-
dimensional autonomous system, considerable research interests have been made in search-
ing for new chaotic attractors. In 1976, Rössler found a special three-dimensional chaotic
system with only one nonlinear term [2]. Later, more and more chaotic attractors were
found, such as Chen system [3], Lv system [4], and Liu system [5]. Due to great poten-
tial in chemical reactions, electrical engineering, information processing and so on, it is
important to generate new chaotic systems and analyze their dynamical behaviors and
dynamical properties.

Since chaotic systems are very sensitive to initial conditions and show irregular, unpre-
dictable behaviors, it is sometimes desirable to control and eliminate it from the system
[6,7]. Inspired by the pioneering work of Ott, Grebogi and Yorke (OGY) in 1990 [8], chaos
control has attracted great attention in the past decades. Subsequently, a series of chaos
control methods [9-11] have been generated. Based on adaptive backstepping method,
chaos control of oscillator circuit is realized in [12]. The work in [13] presents chaos con-
trol of a permanent magnet synchronous motor for eliminating the chaotic phenomena
using an improved sliding mode controller. In [14], adaptive fuzzy control is applied to
chaos control for hyperchaotic Lorenz systems. However, in practical application, it is
required that the control method is simple and effective and easy to implement, and the
inherent characteristics of the system must be remained.

Recently, attention has shifted towards detecting and constructing chaotic attractors
with complex dynamical behaviors. A chaotic system is proposed in [15], which uses expo-
nential function instead of the nonlinear term of the Lv system. An autonomous chaotic
system is presented by substituting absolute term with square term in Sprott system
[16]. In this paper, a new chaotic system is gained by feedback controlling method. The
proposed system has more complicated topological structure and dynamical behaviors.
Some basic dynamical properties are studied. Based on these properties, a simple but
effective feedback controller is designed, and the system ultimately in a relatively short
time stabilizes to the unstable equilibrium.
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This paper is organized as follows. In Section 2, a new chaotic system is proposed. The
basic dynamical properties of the new chaotic system are studied in Section 3. Section 4
studies the stabilization of the unstable equilibrium under the effective controller. Section
5 gives the conclusions of the paper and further study directions.

2. Finding the New Chaotic System. The chaotic system with pulse-excitation [17]
is described by 

ẋ = y − x

ẏ = xz + asgn (sin (bx))

ż = k − xy

(1)

where x, y and z are state variables, and a, b and k are positive real parameters.
The pulse-excitation sgn (sin (bx)) is defined as

sgn (sin (bx)) =

{
1 sin (bx) ≥ 0

−1 sin (bx) < 0
(2)

When the system parameters are given as k = 1, a = 1 and b = 10, two separate chaotic
attractors from different initial values (1, 1, 0.9) (red) and (−1,−1, 0.9) (blue) as their
phase planes and time series shown in Figure 1 coexists in system (1).

From Figure 1, we can find that system (1) shows such a weird phenomenon, which has
the different area of attractors for different initial values (1, 1, 0.9) (red) and (−1,−1, 0.9)
(blue).
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Figure 1. The coexisting two chaotic attractors of system (1) from initial
values (1, 1, 0.9) (red) and (−1,−1, 0.9) (blue): (a) x − y − z; (b) x − y; (c)
time series of y
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Since chaos can be exploited for potential technological applications, it is important to
develop techniques for designing chaotic attractors with complicated topological structures
and complex shapes [18]. To this purpose, we provide a bridge between two separate
chaotic attractors to construct more complex chaotic attractor.

Now, by introducing cy which is a linear state-feedback term to the first equation of
system (1), we get: 

ẋ = y − x + cy

ẏ = xz + asgn (sin (bx))

ż = k − xy

(3)

where x, y and z are state variables, and a, b, c and k are positive real constants.
When the parameters k = 1, a = 1, b = 10 and c = 5, a chaotic attractor exists in the

new system (3). The shape of the chaotic attractor is displayed in Figure 2.
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Figure 2. The new chaotic attractor

3. Some Basic Properties of the New System. In this section, we will investigate
some basic properties of the new system (3) by careful theoretical analysis. These dynam-
ical behaviors include the divergence, chaotic behavior, sensitivity to initial conditions,
equilibrium points and their stability.
(a) Divergence

The state space of system (3) is three-dimensional. The vector field on the right-hand
sides of system (3) is defined by

f (x) =

 f1 (x)
f2 (x)
f3 (x)

 =

 y − x + cy
xz + asgn (sin (bx))

k − xy

 .

The divergence of the vector field f is easily calculated as

divf (x) =
∂f1

∂x
+

∂f2

∂y
+

∂f3

∂z
= −1.

Therefore, dynamical system (3) is one dissipative system, and an exponential contrac-
tion of system (3) is df

dt
= e−1.

That is, in the dynamical system (3), a volume element V0 is apparently contracted by
the flow into a volume element V0e

−t in time t. This means that each volume containing
the trajectories of this dynamical system shrinks to zero as t → +∞ at an exponential
rate. Therefore, all these dynamical system orbits will be eventually confined to a special
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subset that has zero volume, and the asymptotic motion of system (3) will settle onto an
attractor of the system.
(b) Chaotic behavior

There exists a chaotic attractor for k = 1, a = 1, b = 10 and c = 5, and the shape of
the chaotic attractor is shown in Figure 2. The dynamics of the corresponding Lyapaunov
exponents of the novel system (3) is shown in Figure 3.
(c) Sensitivity to initial conditions

A basic and prominent property of a chaotic system is its seemingly erratic behavior,
where a key element is the sensitivity of a trajectory to initial conditions. Different chaotic
systems have different degrees of sensitivity to initial conditions, which differentiate their
degrees of disorder.

Select initial values (1, 1, 0.9) (red) and (1.00002, 1, 0.9) (blue), utilizing Matlab math-
ematical software, and the simulation results are shown in Figure 4.

From Figure 4(b), we can see that the state responses of the proposed chaotic system
(3) are completely different after t = 12s. By comparison, we can find that the new system
has a higher degree of sensitivity to initial conditions.
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Figure 3. Dynamics of the Lyapaunov exponents of system (3)
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Figure 4. Sensitivity of the system state response versus time: (a) time
series of state variable x of system (1); (b) time series of state variable x of
system (3)
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(d) The existence and stability of equilibrium
y − x + cy = 0

xz + asgn (sin (bx)) = 0

k − xy = 0

(4)

Let k = 1, a = 1, b = 10 and c = 5. Equation (4) has two solutions as follows:

E1(−2.44949,−0.40825, 0.40825), E2(2.44949, 0.40825, 0.40825).

The Jacobian matrix of system (3) is defined as

J =

 −1 1 + c 0
z 0 x
−y −x 0

 =

 −1 6 0
z 0 x
−y −x 0

 .

For equilibrium point E1, let |λE − JE1 | = 0, we gain its eigenvalues as

λ1 = −2.0753, λ2 = 0.5377 + 2.3437i, λ3 = 0.5377 − 2.3437i.

Similarly, the corresponding eigenvalues at E2 are

λ1 = −2.0753, λ2 = 0.5377 + 2.3437i, λ3 = 0.5377 − 2.3437i.

By Lyapunov stability theory, we know that E1 and E2 are unstable equilibrium points.

4. Controlling Chaos via Feedback Controller. In this section, simple but effective
feedback controller is designed to drive the chaotic trajectories to the unstable equilibrium.

In order to stabilize the equilibrium E1 and E2, we select the controller U = (u1, u2, u3)
T

as follows:  u1 = x̄ − ȳ − cȳ − yz̄ + ȳz
u2 = −x̄z̄ − asgn (sin (bx)) + k1(y − ȳ)
u3 = x̄ȳ − k + k1(z − z̄)

(5)

where k1 is control parameter.
Under the action of U , at the unstable equilibrium E1 and E2, the controlled system is

supposed to be 
ẋ = y − x + cy + u1

ẏ = xz + asgn (sin (bx)) + u2

ż = k − xy + u3

(6)

Let  e1 = x − x̄
e2 = y − ȳ
e3 = z − z̄

(7)

Then the system error is 
ė1 = y − x + cy + u1

ė2 = xz + asgn (sin (bx)) + u2

ė3 = k − xy + u3

(8)

Consider the following Lyapunov function:

V (e1, e2, e3) =
1

2

(
e2
1 + e2

2 + e2
3

)
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Then the differentiation of V is

V̇ (e1, e2, e3) = e1ė1 + e2ė2 + e3ė3

= e1e2 − e2
1 + ce1e2 − yz̄ (x − x̄) + ȳz (x − x̄)

+ (y − ȳ) (xz − x̄z̄) + k1e
2
2 + (z − z̄) (x̄ȳ − xy) + k1e

2
3

= e1e2 − e2
1 + ce1e2 + k1e

2
2 + k1e

2
3

= − eT P1e

where e = (e1, e2, e3)
T , P1 =

 1 − c+1
2

0
− c+1

2
−k1 0

0 0 −k1

.

Clearly if {
−k1 − (c+1)2

4
> 0

−k1 > 0

we gain k1 < −9, so the matrix P1 is positive definite, which leads to lim
t→∞

∥e(t)∥ = 0.

Therefore, the equilibrium solution O = (0, 0, 0) of sysyem (8) is asymptotically stable.
According to (7), the equilibrium E1,2 (x̄, ȳ, z̄) of the controlled system (6) is globally
asymptotically stable for the choice k1 < −9 and Equation (5).

To verify the effectiveness of the control, select a = 1, b = 10, c = 5, k = 1, k1 = −10,
the initial value x = 3, y = 2, z = −1, utilizing Matlab mathematical software, the
simulation results of the controlled system (6) at the equilibrium E1,2 (x̄, ȳ, z̄) are shown
in Figure 5.
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Figure 5. State curves of the controlled system (6) under the control law
(5): (a) stabilizing chaos to equilibrium E1 under the control law (5), the
control is achieved at t = 8s; (b) stabilizing chaos to equilibrium E2 under
the control law (5), the control is achieved at t = 10s

5. Conclusions. In this paper, the new chaotic system is obtained by feedback control-
ling method. Some basic dynamical properties of the new system are studied. Based on
these properties, simple but effective controller is designed for stabilizing chaos to unsta-
ble equilibria. According to Lyapunov stability theory, specific control parameter is given.
Simulation results show that the chaos can be stabilized to the unstable equilibrium easily.
In addition, for system (3), we will consider the bifurcation, the chaos synchronization
and its application in secure communication using simple and effective controllers.
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