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Abstract. Solving nonlinear equations is an important problem in engineering field.
Therefore, the study of efficient algorithm is of great significance. Teaching-Learning-
Based Optimization (TLBO) has the advantages of simple algorithm, less parameters,
strong global convergence ability and insensitivity to initial point, but it is weak at local
optimization and slow later convergence. On the other hand, Newton method has the
advantage of local deep search and fast convergence rate, but it is sensitive to the initial
point. Therefore, considering advantages and disadvantages of two methods above, this
paper proposes a hybrid algorithm (TNHA) based on the TLBO and Newton method for
solving nonlinear equations. The hybrid algorithm both combines all these merits of the
TLBO and Newton method but does not have the defects. Finally, numerical examples
verify the efficiency of the TNHA.
Keywords: Nonlinear equations, Teaching-Learning-Based Optimization, Newton me-
thod, Hybrid algorithm

1. Introduction. Nonlinear problem is the main subject in the modern mathematics re-
search. In theory research and practical application, many practical engineering problems
are converted into equations. Solving the system of nonlinear equations becomes a key
problem. When the initial value given is close to the exact solution, the Newton method
[1] has second-order convergence rate, and is a very effective local search algorithm. How-
ever, the method is very strict with the selection of the initial value. The convergence
speed has great changes due to different initial value, and bad initial value even causes
the divergence of the method.

On the other hand, solving equations problem can be attributed to the function opti-
mization problem, so we can find the solution of equations by optimization technology.
The key problem is to design effective algorithm. During the last three decades, more
and more researchers are inspired by nature phenomenon, and they have proposed lots
of heuristic optimization algorithms. There are some famous heuristic optimization algo-
rithms, such as Genetic Algorithm (GA) [2,3], Particle Swarm Optimization (PSO) algo-
rithm [4-6] and Gravitation Search Algorithm (GSA) [7,8]. However, a common problem
on these optimization techniques is controlling parameters and a change in the param-
eters changes the effectiveness of the algorithms. In order to overcome the limitations,
Teaching-Learning-Based Optimization (TLBO) algorithm, which is a parameter free al-
gorithm, is proposed by Rao et al. [9-11]. The algorithm simulates teaching-learning
phenomenon of a classroom to solve multi-dimensional, linear and nonlinear problems
with appreciable efficiency, which has been applied to many engineering optimization
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problems and has been proved effective to solve some problems [12-15]. However, to our
best knowledge, solving equations based on TLBO has not been found in literature.

TLBO algorithm has the advantages of simple algorithm, less parameters, strong global
convergence ability, insensitivity to initial point and implicit parallelism. Therefore,
TLBO is suitable for solving a large size of equations. However, there are some shortcom-
ings such as slow later convergence and poor local ability. On the other hand, Newton
method has the high local convergence speed. Therefore, we can take advantage of the
two methods and propose an effectively hybrid algorithm (TNHA) to solve nonlinear
equations. The TNHA both obtains the strong global optimization ability by TLBO and
the strong local convergence by Newton method. Numerical examples also show that
the TNHA not only has fast convergence speed and high precision, but also finds all the
solutions of equations in the given interval.

The rest of this paper is organized as follows. The brief introductions of TLBO algo-
rithm and Newton method are given in Section 2 and Section 3 respectively. Following
by Section 4, we present the hybrid algorithm TNHA and give the detailed steps of the
algorithm. The numerical experiments and result discussion are provided in Section 5.
Finally, Section 6 presents conclusions resulting from the study.

2. Teaching-Learning-Based Optimization (TLBO). Teaching-Learning-Based O-
ptimization (TLBO) is based on the effect of the influence of a teacher on learners in a
class. Like other nature-inspired algorithms, the TLBO is also a population-based method
that uses a population of solutions to proceed to the global solution, but the method has
no user-defined parameter. A group of learners is considered as the population (X). Every
learner is considered as an individual (Xi, i = 1 : S, where S is the population size).

In the TLBO algorithm, different subjects offered to learners are considered as different
design variables. The learning result of a learner is analogous to the ‘fitness’ (function
value f(Xi), i = 1 : S) as in other optimization algorithms. The teacher is considered as
the most knowledgeable person in a class who shares his/her knowledge with the students
to improve the marks of a class. The quality of the learners is evaluated by the mean
value of the student’s mark in a class. There are two parts in the TLBO: ‘Teacher Phase’
and ‘Learner Phase’. The Teacher Phase means learning from the teacher and the Learner
Phase means learning through the interaction between learners.

2.1. Teacher Phase. During the Teacher Phase, the teaching (Xteacher) is assigned to
the best individual, whose ‘fitness’ (f(Xteacher)) is best in a class. A teacher tries to
enhance the mean value (Xmean) of a class up to his/her level. However, practically, it
can be done to some extent according to the learning capability of the class. Suppose Xi

and Xnew,i, i = 1 : S respectively denote the previous marks of every learner and his/her
new marks through learning from a teacher. The Teacher Phase is formulated as

Xnew,i = Xi + ri(XTeacher − TF Xmean), (1)

where ri ∈ [0, 1] is a random number, and TF is a teaching factor. TF is either 1 or 2, and
it can be designed as follows

TF = round[1 + rand(0, 1)]. (2)

Accept Xnew,i, if it gives a better function value. (When solving minimization problems,
we accept Xnew,i, if f(Xnew,i) < f(Xi). The reverse is true for maximization problems.)

2.2. Learner Phase. Learners increase their knowledge by two different means: one
through input from the teacher and the other through the interaction between themselves.
A learner interacts randomly with other learners with the help of group discussions,
presentations, formal communications, etc. A learner (Xi) learns something new by (3),
if the other learner Xh has more knowledge than him or her. Otherwise, Xi is moved
away from Xh by (4). The Learner Phase is expressed as
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For i = 1 : S randomly select another learner Xh, such that i ̸= h
if f(Xi) < f(Xh)

Xnew,i = Xi + ri(Xi −Xh), (3)

else
Xnew,i = Xi + ri(Xh −Xi). (4)

end if
End
Accept Xnew,i, if it gives a better function value. The algorithm will continue its

iterations until reaching the maximum number of generations. (The above equations are
for minimization problems.)

3. Newton Method for Solving Equations. Newton method is one of the most effec-
tive methods for solving nonlinear equations. If the initial value given is fully close to the
exact solution, Newton method is at least quadratic convergence [1]. Therefore, Newton
method is local convergent and has the fast convergent speed. Its basic principle is given
as follows. Newton method is actually a linear method. For the equations F (x) = 0,
its basic idea is to change F (x) = 0 into linear equations. Let x(k) be the approximate
solution of F (x) = 0, and expand function F (x) at x(k). We can get

F (x) ≈ F
(
x(k)

)
+ F ′ (x(k)

) (
x− x(k)

)
. (5)

Then, the equations F (x) = 0 can be described as

F
(
x(k)

)
+ F ′ (x(k)

) (
x− x(k)

)
= 0. (6)

This is a system of linear equations, whose solution x = x(k+1) can be solved by (6)

x(k+1) = x(k) −
[
F ′ (x(k)

)]−1
F

(
x(k)

)
. (7)

If we give initial value x(0), we can gain x(1), x(2), . . .

4. A Hybrid Algorithm Based on TLBO and Newton Method (TNHA). When
initial value given is close to the exact solution, Newton method converges fast. However,
the method is sensitive to initial point. If the selection of initial value is improper, the
method fails to find the solution of equations. From another point of view, TLBO algo-
rithm has the advantages of simple algorithm, less parameters, strong global convergence
ability and insensitivity to initial point. Thus, considering the advantages and disadvan-
tages of the two methods, this paper designs a hybrid algorithm based on TLBO and
Newton algorithm (TNHA) for solving nonlinear equations. The hybrid algorithm com-
bines two mechanisms of global optimization and locally deep iteration. Therefore, not
only can it give full play to the global convergence by TLBO, but also has the advantages
of strong local convergence and high accuracy of the classical Newton method.

Let nonlinear equations be

F (x) = [f1(x), f2(x), . . . , fn(x)]T = 0, (8)

where x = (x1, x2, . . . , xn)T , ai ≤ xi ≤ bi, i = 1, 2, . . . , n, and n is the number of equations.
Solving (8) is equivalent to solving the following optimization problem

min G(x) =
n∑

j=1

[fj(x)]2. (9)

In the TNHA, we solve the optimization problem (9) by TLBO. When the termination
criterion is reached, the corresponding solutions are used to the initial values of Newton
method. Finally, we can gain the solution of the equations F (x) = 0 by (7). The detailed
steps of the TNHA are shown as follows.

Step 1: Define the optimization problem and initialize the optimization parameters
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1) Population size S;
2) Maximum number of generations N1 for the TLBO;
3) Number of design variables D;
4) Limits of design variables aj ≤ Xi,j ≤ bj, i = 1, 2, · · · , S, j = 1, 2, · · · , D.
Step 2: Randomly initialize the population X, according to the population size and the

number of variables.
Step 3: The Teacher Phase: Calculate the mean of the population column wise, which

will give the mean xmean for the particular subject. The teacher will try to shift the mean
from xmean towards xteacher, whose fitness is the best of the population. So the difference
between two values is expressed as

Differencemeani = ri[xteacher − (TF · xmean)]. (10)

where TF is calculated by (2). The resulting difference is added to the current solution
as a new value, thereby improving the existing solution

Xnew,i = Xold,i + Differencemeani. (11)

Step 4: The Learner Phase: As explained above, learners increase their knowledge with
the help of their mutual interactions. The mathematical expression is explained in Section
2. Obtain Xnew,i after the student phase.

Step 5: If the maximum number of iterations N1 is reached, TLBO algorithm is stopped;
otherwise, the iteration is repeated from Step 3.

Step 6: The current global optimal individual Xnew,i = x(0) is the initial point of Newton
method, and the iteration is carried out in order to achieve the global optimal value.

Step 7: x(1) = x(0) −
[
F ′ (x(0)

)]−1
F

(
x(0)

)
.

Step 8: If the maximum number of iterations N2 is reached for Newton method, then
output x(1); otherwise, x(0) ← x(1), return back to Step 7.

5. Numerical Experiments and Result Analysis. In this part, we choose three non-
linear equations to test the optimization performance of the TNHA. In order to verify
its high-efficiency, we compare the TNHA with the algorithms in references, TLBO and
Newton method. For the TNHA and TLBO, the population size is defined as 20. The
maximum numbers of iterations N1 and N2 are 1000 and 20 respectively. In order to ef-
fectively reduce the influence of random disturbance, every algorithm runs independently
50 times. The mean value of solutions is viewed as the final result.

Example 1 [16]

{
f1(x) = x2

1 − x2 + 1 = 0

f2(x) = x1 − cos(0.5πx2) = 0,

where −2 ≤ x1, x2 ≤ 2. The exact solutions are x∗
1 =

(
−1/
√

2, 1.5
)T

, x∗
2 = (0, 1)T and

x∗
3 = (−1, 2)T .
Example 1 is a system of transcendental equations. The computational results are

shown in Table 1. As seen from Table 1, the TNHA finds three families of solutions for
Example 1, namely all the solutions, but [16] only finds two families of solutions. Success
rate of the TNHA is 100%, but that of [16] is only 86%. The mean of solutions got by
TNHA in this paper is closer to the exact solution than [16]. What is more, the numbers
of every solution found are similar. Therefore, TNHA has higher precision and better
stability than [16]. On the whole, the TNHA is greatly super to [16].

Example 2 [17]


f1(x) = x1 + x2 − 2x3 = 0

f2(x) = x1x2 − 1 = 0

f3(x) = x2
1 + x2

2 − 2 = 0,

where 0 ≤ x1, x2, x3 ≤ 2. The exact solution is x∗ = (1, 1, 1)T .
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Table 1. Comparison of the TNHA with [16]

Algorithm
Number of

search solutions
Success rate Mean of x1 Mean of x2

Number of
solutions

[16] 43 86% −0.77024 1.560608 26
0.010104 0.989197 17

TNHA 50 100% −0.7071 1.5000 20
0.0000 1.0000 13
−1.0000 2.0000 17

Exact solution −1/
√

2 1.5
0 1
−1 2

Table 2. Comparison of the TNHA with [17]

Algorithm Mean of x1 Mean of x2 Mean of x3 ∥x− x∗∥
[17] 1.0175 0.9822 0.9999 0.0250

TNHA 1.0000 1.0000 1.0000 2.2360e-09
Exact solution 1 1 1 0

Table 3. Comparison of the TNHA with the TLBO

Algorithm Success rate Mean of x1 Mean of x2 Mean of x3 ∥x− x∗∥
TLBO 100% 1.0019 0.9976 0.9999 0.0031
TNHA 100% 1.000000 1.000000 1.000000 2.2360e-09

Exact solution 1 1 1 0

Example 2 is a system of algebraic equations. Table 2 is the comparison result of the
TNHA with [17]. The mean of solutions got by TNHA in this paper is closer to the exact
solution than [17], so the TNHA has very high precision.

Table 3 is the comparison result of the TNHA with single TLBO. Although the success
rate is the same, the TNHA obtains a higher accuracy than the TLBO by deep iteration
of Newton method. Thus, the hybrid algorithm in this paper gets more accurate solution
than the TLBO alone.

Example 3 [16]


f1(x) = (x1 − 5x2)

2 + 40 sin2(10x3) = 0

f2(x) = (x2 − 2x3)
2 + 40 sin2(10x1) = 0

f3(x) = (3x1 + x3)
2 + 40 sin2(10x2) = 0,

where −1 ≤ x1, x2, x3 ≤ 1. The exact solution is x∗ = (0, 0, 0)T .
Table 4 compares the TNHA with [16], TLBO and Newton method. By view of success

rate, the TNHA and TLBO is 100%, but that of [16] is only 54% and the lowest is Newton
method. Because the Newton method is very strict with the selection of the initial value,
whose success rate is only 4%. The TNHA and TLBO can find the approximate solution
every time, so the reliability and stability are best. From another point of view, the TNHA
has the highest precision, TLBO is the second and [16] is the worst in four algorithms.
In general, the TNHA has the great stability, fast convergence speed and high precision.
Therefore, the TNHA is a good selection for solving nonlinear equations.

6. Conclusions. The paper introduces the principles of TLBO and Newton method at
first. Then, considering advantages and disadvantages of two methods above, this paper
proposes a hybrid algorithm TNHA for solving nonlinear equations. The TNHA both
gives full play to the global research ability of the TLBO and keeps the deep iteration of
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Table 4. Comparison of the TNHA with [16], TLBO and Newton method

Algorithm
Number
of search
solutions

Success
rate

Mean of x1 Mean of x2 Mean of x3 ∥x− x∗∥

[16] 27 54% −0.000001 −0.000012 −0.000001 1.2083e-05
TLBO 50 100% −0.3001e-39 0.5857e-39 −0.0485e-39 6.5991e-40

Newton method 2 4% −0.1238e-7 −0.1904e-7 0.0784e-7 2.4026e-08
TNHA 50 100% −0.2862e-45 0.0463e-45 0.558611e-45 6.2934e-46

Exact solution 0 0 0 0

Newton method. At last, we test the performance of the TNHA by numerical examples.
The experiments show that the TNHA not only shows better accuracy and stability than
the algorithms in the references and Newton method, but also can detect all the solution
of equations in given the interval. Moreover, the TNHA has higher precision than the
single TLBO because of the deep iteration of Newton method. Therefore, the TNHA is
greatly effective for solving nonlinear equations, and its design strategy is a good reference
for solving practical problems. Further practical engineering application of the TNHA in
areas of computer engineering and material structure design can shed further light and is
left for future research.
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