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Abstract. In view of the nonlinearity of air quality forecast and the influence of mete-
orological factors, a conditional random field (CRF) model for real-time urban air quality
forecast is proposed in this paper. Some meteorological features are extracted on the ba-
sis of analysis on the influence of meteorological factors on air quality. The conditional
random field model is employed to forecast real-time urban air quality index (AQI) lev-
els with extracted meteorological feature data, the AQI levels of corresponding time and
real-time meteorological forecast data. A novel feature template and Model updating rule
are defined during the forecast of CRF model in order to respectively improve forecast
accuracy and guarantee efficiency. Experimental results show that with multiple meteo-
rological features taken into consideration, the CRF model is suitable for forecasting AQI
levels due to less error and higher accuracy.
Keywords: Air quality, Meteorological factors, CRF, Forecast

1. Introduction. Information about urban air quality is of great importance to protect
human health and governments policy making. Air quality index (AQI) is a number used
by government agencies to communicate to the public how polluted the air is currently.
AQI is divided into six levels according to the size of the value, which include G, M , U -S,
U , V U and H, as shown in Figure 1. The greater the AQI values are, the darker the
color of the corresponding level is, showing the air pollution is more serious. The AQI
levels make people understand the air quality information in a clearer and simpler way,
and help people better protect health. Valuable reference information can be provided
for the public and government decision-making in time by forecasting AQI levels in real
time.

The bulk of existing work on the statistical forecasting of air quality is based on either
neural networks or grey models [1, 2]. Wang et al. [3] utilized a hybrid artificial neural
network to enhance the forecast accuracy by revising the error term of the traditional
method. Zheng et al. [4] combined artificial neural network with linear regression to infer
the air quality. Pai et al. [5] utilized GM(1, 1) model of grey models to forecast hourly
PM10 and PM2.5 concentrations in Banciao city of Taiwan. However, neural networks
and grey models are both subject to important drawbacks. The neural networks are
complicated, prone to in-sample over fitting, and easy to fall into local minimization
problem, with low convergence speed and poor real-time performance. Grey models are
deficient in the abilities of self-learning and self-organization with other disadvantages
that the ability of processing nonlinear big data is weak, that GM(1, 1) model is of the
single input and single output, and that the influence of meteorological factors on air
quality is not taken into account.

The conditional random field (CRF), originally presented by Lafferty et al. [6], has
the advantages of self-learning, high convergence speed, strong ability for fusing multiple
features and good forecast performance for nonlinear big data and so on. CRF method is
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Figure 1. Division of AQI level

Figure 2. Framework of CRF model

suitable for air quality forecast due to the advantages. However, CRF method is barely
used to forecast air quality in studies.

In this paper, on the basis of analyzing the influence of meteorological factors on air
quality, according to the urban meteorological data and the AQI levels of the correspond-
ing time, the CRF method is employed to forecast real-time air quality. In order to
improve the forecast accuracy and guarantee the forecast efficiency, we respectively define
a novel feature template (FT ) and Model updating rule (MUR) in the forecast process of
CRF model. Experimental results show that the CRF method has high forecast accuracy
and good real-time performance.

The remaining of the paper is organized as follows. Section 2 gives the framework of the
CRF model. The meteorological features are extracted in Section 3. The establishment
of the CRF model is introduced and the feature template and Model updating rules are
defined in Section 4. Section 5 is experiments. The paper is concluded in Section 6.

2. The Framework of the CRF Model. The framework of the CRF model is shown
in Figure 2. Firstly, urban meteorological data are analyzed and some meteorological
features are extracted. Secondly, according to Figure 1, AQI values are converted to
corresponding AQI levels. The extracted meteorological data and the AQI level data
of the corresponding time are used as the training data set of CRF model. Thirdly, a
novel feature template is defined based on the training data set, and the features are
extracted from the training set according to the feature template. Fourthly, the CRF
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learning algorithm is used to learn training data set and generate the Model. The forecast
accuracy is compared between the newly generated Model and those at earlier time points,
as a result of which the Model with the highest accuracy is selected. Finally, the real-
time meteorological features are selected as a test set. The AQI levels of corresponding
time are forecasted by CRF model. The forecast levels are compared with the real ones,
according to which the forecast accuracy and recall are calculated.

3. Meteorological Feature Extraction. Urban air quality is directly affected by the
local air pollutant emissions and meteorological factors. The meteorological factors are
the main factors under the condition that pollutant emissions are relatively stable [7].
The meteorological features are taken into account in the forecast, which will effectively
improve the accuracy of the air quality forecast. According to China’s air quality report
and monitoring analysis of municipal air monitoring stations, the meteorological factors
affecting the air quality mainly include temperature, wind speed , atmospheric pressure
and so on. Accordingly, we identify five features: atmospheric pressure (FP ), temperature
(FT ), rainfall (FR), wind speed (FW ) and humidity (FH) on the basis of considering factors
like the convenience of getting data and the importance of impact on air quality. Table
1 is the monthly correlation coefficients between AQI values and meteorological factors
in Beijing, Tianjin and Shijiazhuang in the past ten years. Table 1 indicates there is the
significant positive correlation between the atmospheric pressure and AQI values and the
negative correlation between other meteorological features and AQI values. In Table 1, P
denotes Pearson coefficient, and M denotes the number of months.

Table 1. Monthly correlation coefficients between AQI and meteorological factors

Atmospheric
pressure
(hPa)

Temperature
(◦C)

Rainfall
(mm)

Humidity
(%)

Wind
speed
(m/s)

Beijing
P 0.183 −0.266 −0.431 −0.359 −0.383
M 120 120 120 120 120

Tianjin
P 0.383 −0.470 −0.372 −0.258 −0.050
M 120 120 120 120 120

Shijiazhuang
P 0.404 −0.471 −0.407 −0.087 −0.075
M 120 120 120 120 120

Atmospheric pressure and AQI The air pollutants rise to high altitude when at-
mospheric pressure is low. The lower the pressure is, the better it is for air pollutants to
diffuse and dilute, with corresponding AQI decreased.

Temperature and AQI The higher the temperature is, the more intense air convection
activity is, with the results that it is more conducive to the diffusion of air pollutants and
that air quality is better.

Rainfall and AQI Rainfall can effectively remove and wash air pollutants, and reduce
the concentrations of various air pollutants, which will purify the air.

Wind speed and AQI The greater wind speed is, the more conducive it is to the
dilution and diffusion of pollutants, with better air quality.

Humidity and AQI The high humidity indicates the emergence of rain and snow,
which can effectively reduce the concentrations of air pollutants.

4. The Air Quality Forecast Model.

4.1. CRF model. In considering the influence of the meteorological features on air qual-
ity, we use linear-chain CRF to forecast the real-time AQI levels. The advantage of CRF
over hidden Markov models is the relaxation of the independence assumptions between
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Figure 3. Structure of CRF forecast model

features. Additionally, CRF avoids the label bias problem exhibited by maximum entropy
Markov models. CRF defines the conditional distribution of a label sequence Y when an
observation sequence X is given.

As shown in Figure 3, the white nodes Y = y1, y2, . . . , ym represent hidden state vari-
ables to be inferred given the sequence of observations denoted by black nodes X =
x1, x2, . . . , xm, where xi = FP , FT , FR, FW , FH , t (t is a timestamp by hour, e.g., 9am).
The yi is structured to form a chain with an edge between each yi−1 and yi, as well as has
an AQI label belonging to G,M, U -S, U, V U,H. When conditioned on X, the random
variables yi obey the Markov property with respect to the graph: P (Yi|X, Yj, i ̸= j) =
P (Yi|X, Yj, i ∼ j), where i ∼ j means that i and j are neighbors in graph. (X, Y ) is a
conditional random field.

The probability of a particular label sequence y given observation sequence x is defined
as a normalized product of potential functions as follows:

p(y | x) ∝ exp

(∑
j

λjtj(yi−1, yi, x, i)

)
+
∑

k

µksk(yi, x, i) (1)

where tj(yi−1, yi, x, i) is a transition feature function of the entire observation sequence
and the label at positions i− 1 and i; sk(yi, x, i) is a state feature function of the label at
position i and the observation sequence; λj and µk are parameters to be estimated from
training data.

The two feature functions are unified as: fi(yi−1, yi, x, i), and we transfer Equation (1)
to [6]:

p(y | x) ∝ 1

Z(x)
exp

(∑
j

λjtj(yi−1, yi, x, i)

)
(2)

where Z(x) = exp

(∑
j

λjtj (yi−1, yi, x, i)

)
.

The CRF algorithm framework is presented in Algorithm 1.

4.2. The novel feature template. CRF model can effectively deal with the relationship
between the multiple features through feature template without considering independence
assumption. Different feature templates will affect the forecast accuracy of the CRF
model. According to the relationship between the meteorological features and the air
quality, we define a novel feature template, as shown in Figure 4, to achieve high feature
recognition effect and high forecast accuracy of the algorithm.

The five meteorological features are defined as uncorrelated, namely five features do
not affect each other, and the fact is taken into account that meteorological features at a
previous time point exert no effect on those at the next time point. Real-time AQI levels
are inferred only by five meteorological features at the current time point. In Figure 4,
each line is a template. Each template is specified by %x[row, col] to specify a token in
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Algorithm 1: CRF
Input : A set of meteorological features (Fp, FT , FR, FW , FH) and a set of AQI values
Output : Forecast AQI levels
1. Do
2. AQI values → AQI levles
3. CRF learn (Fp, FT , FR, FW , FH , AQI levels)
4. The feature template (FT) is defined
5. Apply FT to extracting features from training data set
6. Generate Model and compare the forecast accuracy of Models
7. Select the Model with the highest accuracy
8. CRF test (Fp, FT , FR, FW , FH)
9. Return Forecast AQI levels

Figure 4. The novel feature template

Table 2. Models forecast accuracy comparison

Forecast accuracy (9am) Forecast accuracy (10am)
Model-1 83% 87%
Model-2 82% 83%

the input data. The row specifies the row offset of the current token, and the col the
column location. %x[0,1] represents atmospheric pressure feature, %x[0,2] represents
temperature feature, %x[0,3] represents rainfall feature, %x[0,4] represents wind speed
feature, %x[0,5] represents humidity feature, and %x[0,6] represents the AQI level. The
five meteorological features are extracted through %x[row, col] in a large number of
meteorological data.

4.3. The model updating rule. CRF model will generate a Model in every forecast
through the training data set and the feature template. Model is directly related to the
forecast performance of CRF, and the appropriate Model will help to improve the forecast
accuracy of CRF.

Table 2 is a comparison of forecast accuracy between the Models at 9am and 10am
in Beijing on June 20, 2015. Model-1 is generated at 9am and Model-2 at 10am. Table
3 presents the generated Model at the current time point, which is not the one with
the highest accuracy and the generated Model at an earlier time point may have higher
forecast accuracy.

Therefore, we select the Model with the highest accuracy by comparing the accuracy
between the generated Model at current time point and the ones at the earlier time points
in the real-time forecast. However, every real-time forecast will produce a Model. The
accumulation of numerous Models will reduce the efficiency of the CRF forecast model
which requires regularly updating the accumulated Models. For Model update setting,
excessively quick update will lead to the deletion of Model with high forecast accuracy.
Excessively slow update will affect the efficiency of CRF model. Accordingly, we define
the Model updating rule (MUR) through contrast experiment in order to simultaneously
guarantee the forecast accuracy and efficiency of CRF model.
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Definition 4.1. Model updating rule (MUR) is defined as Equation (3):

MUR = 30(N − 1) (3)

where N is the number of forecast during the day. Namely, update is carried out once
every 30 days, which eliminates the earliest 30(N − 1) Models.

The design of the feature template and Model updating rule helps improve the forecast
accuracy of AQI level and guarantee the efficiency of the CRF model.

5. Experiments.

5.1. Datasets. In the evaluation, we take Beijing as an example to forecast the AQI
level. The hourly meteorological data, consisting of atmospheric pressure, temperature,
rainfall, wind speed and humidity, is collected from the public meteorological website
records during a year. The AQI data of corresponding time is from the air quality real-
time release system of Beijing municipal environmental monitoring center. We use the
real datasets detailed in Table 3. As the air quality real-time release system may not have
reports sometimes, we present the hours of effective records in Table 3.

Table 3. Details of the datasets

Meteorological data
Hours 8650

Time Span 5\31\2014 5\31\2015

AQI data
Hours 8650

Time Span 5\31\2014 5\31\2015

5.2. Results and analysis. We use a half of the data for training and the rest for testing,
ensuring both parts of data have a relatively balanced distribution over different AQI
levels. After the forecast is completed, the training set and the testing set are exchanged
to carry out another forecast. The forecast results of two forecasts are combined. The
forecast accuracy and the recall are calculated as shown in Table 4.

Table 4 presents the mean forecast accuracy as high as 77.6% which is obtained by using
our CRF model to forecast the AQI levels of Beijing. The forecast accuracy of G level is
the highest, up to 88.5%. Although the forecast accuracy of V U&H level is the lowest, it
reaches 70.4%. The mean recall of CRF model is 81.6%. Through the analysis, it can be
concluded that our CRF model is suitable to forecast the future urban air quality, with
good forecast performance. Our CRF model is employed to forecast the AQI levels of
Beijing from 0am to 23pm on June 20, 2015. The forecast results are shown in Figure 5.

In Figure 5, only three time points in the AQI level forecast do not match with the real
AQI levels, respectively at 7am, 9am and 18pm. At 7am and 9am, the AQI level (M)
is lower than the real AQI level (U -S), and the AQI level (U -S) is higher than the real
AQI level (M) at 18pm. The forecast accuracy of CRF method is 87.5%, which further
indicates that the CRF method has high forecast accuracy under the consideration of the
influence of multiple meteorological features.

We use the artificial neural network (ANN) method to forecast the AQI levels of Beijing
with the same datasets, and compare the forecast accuracy and the recall with those of
our CRF method. Table 5 shows the comparison results of forecast accuracy and recall.
Results show that in terms of forecast accuracy and recall, the CRF method is superior
to the neural network method.

The efficiency of our approach, which was tested on a 64-bit server with an AMD
A8-3850 2.90 GHZ CPU and 16GB RAM. On average, we can complete one forecast in
12.6ms. One forecast is completed in 13.1ms by the traditional CRF model. With good
real-time performance, our CRF model is suitable for the urban air quality forecast.
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Table 4. The forecast accuracy and recall of CRF

Real level
Forecast level

Recall
G M U-S U VU&H

G 1886 423 9 0 0 0.814
M 243 1882 342 33 0 0.753

U-S 3 270 1190 208 69 0.684
U 0 0 123 1364 129 0.844

VU&H 0 0 0 6 470 0.987
Accuracy 0.885 0.731 0.715 0.847 0.704

Figure 5. AQI levels forecast

Table 5. Comparison results of forecast accuracy and recall

ANN CRF
Accuracy 77.6% 64.5%

Recall 70.4% 56.4%

6. Conclusions. In this paper, the CRF model is applied to forecasting the AQI levels
based on the consideration of the influence of multiple meteorological features on air
quality. We respectively define the feature template and Model updating rule to extract
meteorological features and guarantee the efficiency of the CRF model, and take Beijing as
an example for experiments and analysis. Experimental results show that mean forecast
accuracy and recall of CRF are high in forecasting the AQI levels. Comparison with
the ANN method indicates the forecast accuracy and the recall of our CRF method
are respectively 13.1% and 15.0% higher than those of the ANN method. These results
demonstrate with high forecast accuracy, and our approach is comprehensive and simple.
In the future, we would like to apply the CRF model to more cities, further improve the
forecast accuracy and study the root causes of air pollution.
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