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ABSTRACT. Recently, representing videos using spatio-temporal parts becomes popular
for action recognition. It can help localise which parts of a video are significant and
discriminative. To find the discriminative parts, these methods usually first learn a set
of candidate spatio-temporal part detectors and then heuristically select a portion of them.
However, it is difficult to determine a good criteria for selection. Moreover, they employ
two independent processes, i.e., learning and selection, neglecting the influences between
each other. In this letter, we introduce group sparse regularizer into latent structural
support vector machine to automatically learn and select a set of discriminative part
detectors in a unified framework. We further employ similarity constraints to force the
detected spatio-temporal parts from the same class to be more similar and consistent.
We also propose an iterative method to compute the spatio-temporal parts with similarity
constraints. At last, the max-pooled responses to learned part detectors are normalized
and form the final action representation. We validate our method on two public datasets,
and experiment results show the promising results of our method.

Keywords: Similarity constraints, Latent structural support vector machine, Group
sparse regularization, Action recognition

1. Introduction. Recognizing human actions is widely studied in computer vision field
with many important applications, such as video surveillance, video retrieving, and hum-
an-computer interaction.

Many popular methods have been proposed for action recognition. For instance, Zhu
et al. [1] present sparse coding on local spatial-temporal volumes to recognize actions.
Sheng et al. [2] use direction-dependent feature pairs to represent actions. In [3, 4]
contextual representation is employed for action recognition. Wang et al. [5] extract
dense trajectories of action sequences to represent actions. Sun et al. [6] present sparseness
and self-similarity to recognize actions. Despite that these techniques have made many
achievements, there remain some challenging and complex problems due to occlusion,
cluttered background and other factors.

Recently, representing videos as part-based model has attracted much attention and
performed well on some benchmark datasets. Xie et al. [7] employed deformable part
model for action representation. Sapienza et al. [8] learn the most discriminative spatio-
temporal part for each action. However, an action usually has multiple spatio-temporal
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parts which can jointly separate it from other actions. In [9, 10, 11], to learn a set of dis-
criminative spatio-temporal parts, they usually first learn spatio-temporal part detectors
separately from spatio-temporal part clusters by discriminative learning method, such as
support vector machine. Then a fixed number of them are selected and unimportant ones
are discarded according to some heuristic criteria. However, these methods learn discrim-
inative spatio-temporal part detectors in two independent steps neglecting the influences
between each other. Moreover, it is heuristic to define a criteria for ranking and selecting
spatio-temporal part detectors and difficult to determine a best number of them. This
will lead to bad generalization performance for new scenarios.

In this letter, we propose a similarity-constrained latent structural support vector ma-
chine (SCLSSVM) model. Different from the part-based methods mentioned above, our
method automatically learns and selects a set of discriminative spatio-temporal part de-
tectors in a single framework. In our method, we unify learning and selection into a
single process by incorporating group sparse regularizer into latent structural support
vector machine (LSSVM) model [12]. Considering each spatio-temporal part detector as
a group, group sparse regularizer forces the model to automatically learn and select a set
of important part detectors by setting unimportant ones to zero in a max-margin frame-
work. Moreover, to make the detected parts more consistent, we introduce the similarity
constraints on detected parts into LSSVM model, i.e., we expect the detected parts cor-
responding to the same part detector in each action are similar and consistent as much
as possible. Furthermore, we propose an iterative method to fast compute the spatio-
temporal parts with similarity constraints. With learned spatio-temporal part detectors,
a video can be encoded by max-pooling over the responses of it to the discriminative
spatio-temporal part detectors. The max-pooled responses are further normalized and
form the final representation for action classification. To validate the effectiveness of our
method, we test it on two benchmarks and experiment results show its effectiveness.

The remainder of the letter is organized as follows. Section 2 presents our proposed
SCLSSVM model and its solution. Section 3 reports the experimental results on two
benchmarks. Finally, we conclude the letter in Section 4.

2. Proposed Approach. The flowchart of our proposed approach for action recognition
is illustrated in Figure 1. Specifically, we first dense sample spatio-temporal parts and
represent them into feature vectors. Then discriminative spatio-temporal part detectors
are learned and selected by our proposed SCLSSVM model. With learned part detectors,
each video is represented by max-pooled responses which are further normalized and
form the final representation for action classification. In this section, we first introduce
the description of spatio-temporal parts and then present our SCLSSVM model. At last,
we show an iterative method to solve our model.
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2.1. Video representation. Given a video, we first extract and describe dense multi-
scale spatio-temporal parts, each of which is a cuboid centred at z = {x,y,t}, where z,
y, t represent the spatio-temporal coordinates respectively. Subsequently, each part is
characterized by dense trajectory descriptor [13] and histogram of 3 dimensional oriented
gradients (HOG3D) descriptor [14]. For dense trajectory descriptor, there are three chan-
nel features in total (i.e., trajectory, histogram of oriented gradients (HOG)/histogram
of optical flow (HOF), and motion boundary histograms (MBH)). Following [13], we use
the bag-of-features (BoF) representation and the three channel features are clustered by
k-means algorithm into W words respectively. Then each channel is represented by a
histogram obtained by aggregating the quantized dense trajectory features in the corre-
sponding cuboid and further L1 normalized. The histogram features of three channels
are concatenated together, further combined with HOG3D features, and form the final
representation for spatio-temporal parts.

2.2. SCLSSVM model. The training process is weakly supervised, i.e., we know noth-
ing about the discriminative parts and only have a set of training videos with action
labels. We employ latent variables h € H to indicate the spatio-temporal parts. Given
the training video set {z;,y;}X, € X x Y, the feature vector ¢(z;,y,h) describes the
spatio-temporal part in video z; with predicted label y under latent variable h. For each
action class, we assume that there are K parts which can jointly separate it from other
actions. Then the part detectors D for a task with C' action classes can be represented
as:

dig dip - dix
D dz‘,1 d2',2 . d2‘,K (1)
de1 dep -+ dex
and the corresponding joint feature vector can be formulated as (0,. .., ¢z, 4.1, 0,...,0),

where most of the entries are zero except the ones at the interval of predicted label 3. We
further define the response of video z; associated with part detector d.j as fdc’k(xi, y) =
maxy, dzjkgﬁfci’y,h.

Then for a multi-class task, our model can be formulated into a single framework with
latent variables:

N K
D* = arg min g E &+ Ng(D)

i=1 k=1
s.t. m}?X d;,kgbzi,yi,h - m}?‘x dimﬁbzi,y,h > A(yuy) - é'zk fzk > 07 Vi7y7 ka m (2>

where A(y;,y) is the loss function, g(D) is the regularizer on part detectors D, and A is
the weight coefficient of g(D). The loss function A(y;,y) measures the cost of predicting
ground-truth label y; as y. In our work, we set it to be 0—1 loss function, i.e., A(y;,y) = 1if
y; # y and A(y;,y) = 0 otherwise. Regularizer g(D) forces the model to select a portion of
important part detectors and discard non-discriminative ones by setting them to zero. We
employ the group sparse regularization technique [15]. Usually, /; » and / ;, s mixed norms
are used in practice and we select [; 5 regularizer as the regularization term. Taking each
part detector as a group, g(D) can be formulated as Zle S |lde]l2- The constraints
in Equation (2) force that the response f(x;,y,h) associated with ground-truth label y;
should be larger than that associated with any other predicted labels.

Our proposed model can be solved in a two-step iterative method. Firstly, the latent
variables h are determined with part detectors fixed. Secondly, a structural support vector
machine with group sparse regularizer without latent variables is solved. Traditional
LSSVM model computes latent variables by maximizing responses of videos associated
with part detectors neglecting any relationship between detected spatio-temporal parts.
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This may lead to large variation and inconsistency in the detected parts from the same
class. We expect them not only to be discriminative but also similar and consistent as
much as possible. To achieve this goal, we introduce a pairwise similarity-constrained
term during computing latent variables.

In our work, we just consider the similarity of latent variables corresponding to ground-
truth labels under the ground-truth part detector. We measure the similarity of detected
parts using the Euclidean distance function, and the similarity-constrained term can be
defined as:

S = 30> (@i i, ). 0y ) = 305" =0l v h) = Sy v, WIF ()

Then in our model, for part detector d.j, similarity-constrained latent variables are de-
termined by:

g { arg maxXpc g (dgkqb(xi,yi, h)+aS), ify, =c n

arg maxpeH dz:k;¢ (xiu Yi, h‘) ) if Yi 7£ c

where « is the tradeoff between similarity and response. In the following section, we
introduce how to solve our model in detail.

2.3. Optimization method. To compute latent variables, we fix spatio-temporal part
detectors D. From Equation (4), for part detector d.j, we can observe that it is easy
to compute the latent variables for videos whose labels are not equal to ¢. However, it
is inhibitive to directly compute the latent variables for videos whose labels are equal
to c. There will be vaz”l n,; combinations if there are n; possible latent values for video
x;, where N, is the number of videos whose labels are equal to c. To efficiently compute
latent variables, we reformulate Equation (3) as S = —Nip > e |0(is yis 1) —¢)||2, where

¢ is the mean value of latent variables. Then latent variables can be determined in an
iterative manner. Firstly, we compute the mean value of latent variables ¢. Secondly,
we compute S and update the latent variables using Equation (4). We run the two steps
iteratively until convergence.

To compute part detectors, we update them one by one with latent variables for all
videos fixed. To update d.j, we fix the other part detectors. Then, the object function
can be reformulated as:

N
1
ar, = in — S Ald,
ok arggg?]\,;:l£+ ekl

5.1 m}?x d;,k¢ri,yi,h - m}?,X d§m¢zi,y,h 2 A(yla y) - 52’7 fz > 07 VZ, Y, kv m (5)

From Equation (5), we can observe that there are K(C' — 1) constraints for each video.
For the video x; whose label y; is equal to ¢, the constraints can be reformulated as:

62' Z |:1 + m}?x d§m¢xi,y,h - thaX dz:k¢a:i,yi,h] N ) vy € Y\yu m (6)

where [z]; means max(z,0). Because the other part detectors are fixed, then max d;
¢, yn are constants. The constraints can be rewritten as one constraint:

& > {1 + max max d;mqui’y,h — max d2k¢$i7yiah:| , Yy eY\y,m (7)
+

y7m

With the similar analysis, the constraints on the videos whose labels are not equal to ¢
can be rewritten as one constraint as follows:

T . T
§i = [1 + max e Ps.cn — Min max dyhm(bz,.,yi,h] L Vm (8)
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With the above simplification, there are N constraints in total. Then we can reformulate
the object function as an unconstrained problem:

d ) = arg min ~/ (de) + Mlderl]2 9)
where

flder) = Z [1 + max max d£m¢%y7h — max dgkqﬁxi’yi’h}
+
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Due to the group sparse regularization on D, we employ a proximal method [16] to update
dc,k; i.e.,

di;l = soft (u', ) (11)
where soft(u,a) = sign(u)[|lu] —a],, o' is the step length, and v’ = d; — atagik.
The partial derivative is computed as 62{ - = Y yimeos0 ~ Priyihs + Zyi#m>0 Dy e h

_ T T _ T
where 0 = 1 + maxy,, maxy, d, ,, ¢z, yn — Maxy dg ; Ou, 4, p and n = 1+ maxy, d, ;. Ou; cn —
: T
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2.4. Action classification. After optimization, non-discriminative part detectors are set
to be zero. Given C' classes of actions, we will learn K'C' spatio-temporal part detectors.
To efficiently employ the learned part detectors, we code each video by max-pooling
the responses of it to the detected spatio-temporal part detectors and it will have KC'
responses which are further scaled by logistic function ¥(x) = m, where a is the
smoothing factor and is fixed to be 0.5 in our experiments. Then each video can be
characterized by KC' scaled values. At last, we employ multi-class non-linear support

vector machine with radial basis function kernel for final classification.

3. Experiments. In this section, we evaluate the performance of the proposed method
on two public datasets: Kungliga Tekniska Hogskolan (KTH) dataset [17] and University
of Central Florida (UCF) Sports dataset [18] in a leave-one-out cross validation manner.
The KTH dataset consists of six action categories (i.e., boxing, hand clapping, hand
waving, jogging, running and walking,). The UCF Sports dataset contains 10 sport action
categories (i.e., Dive, Golf, Kick, Lift, Ride, Run, Skate, BSwing, HSwing, Walk).

3.1. Parameter settings. In our work, we extract spatio-temporal parts from a regu-
lar grid spacing of 16 pixels in space and 5 pixels in time. The spatio-temporal parts
allow for 5 scales in space (1, v/2, 2, 2¢/2, 4)' and 3 scales in time (1, v/2, 2), and the
smallest one has a size of 32 x 32 x 8. We use the same scales for the two datasets by
down-sampling UCF Sports dataset to half the spatial resolution. Then, spatio-temporal
parts are described by HOG3D and dense trajectory features. HOG3D features are com-
puted with parameters 5x5x4 cells with 10 discrete orientations, resulting in the HOG3D
features with 1000 dimensions. Dense trajectory features are grouped into 2000 words
(W =2000) for trajectory, HOG/HOF, MBH features respectively. To initialize part de-
tectors, we group the dense features of each class videos into 300 (K = 300) clusters using
k-means algorithm, and set the centres as the initial part detectors for the corresponding
class. The coefficients a and A are set to 0.3 and 1.5 respectively on the two datasets.

I'Notice that we set the space scales in horizontal and vertical the same.
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FIGURE 2. (a) Performances with different coefficients, (b) numbers of pre-
served part detectors with different coefficients
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FIGURE 3. Confusion matrix: (a) On KTH datset, (b) On UCF sports datset

3.2. Experimental results on KTH and UCF Sports datasets. To investigate the
effect of similarity constraints and group sparse regularizer on our model, we test different
combinations of o and A on the two datsets. The effects of the two terms on two datasets
are similar. Due to limited space, we only show the comparison results on KTH datset.
As illustrated in Figure 2(a), we can observe that the similarity constraints can affect
and improve the performance of our model. We also investigate the effect of o and A on
numbers of preserved part detectors. In Figure 2(b), we can observe that the numbers of
preserved part detectors are mainly dependent on group sparse regularizer.

Figure 3(a) shows the confusion matrix on KTH dataset. The main confusion occurs
between jogging and running, which are performed similarly. Figure 3(b) shows the
confusion matrix on UCF Sports dataset. The golf is relatively confused by other class.
Finally, we achieve the average accuracies of 97.83% on KTH dataset and 92.67% on UCF
Sports dataset.

Table 1 presents a comparison of our method with state-of-the-art methods on the two
datasets, which indicate that our method achieves the competitive results.

4. Conclusions. In this letter, we represent videos using multi-scale dense spatio-tempo-
ral parts which are described by dense trajectory features and HOG3D features and
present a similarity-constrained latent structural support vector machine model to learn
and select a set of discriminative spatio-temporal part detectors in a weakly supervised
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TABLE 1. Recognition results on two benchmark datasets

Method Year | KTH (%) | UCF Sports (%)

Zhu et al. [1] 2010 | 94.92 81.33
Xie et al. [7] 2011 | 87.33 N/A
Zhang et al. [3] 2012 95.6 87.33
Wang et al. [5] 2013 94.2 88.0
Li et al. [4] 2014 |  96.33 92

Sapienza et al. [8] | 2014 | 96.73 N/A
Sheng et al. [2] 2015 | 94.99 87.33
Sun et al. [6] 2015 |  96.5 88.5
Ours 97.83 92.67

setting. By introducing group sparse regularizer, non-discriminative part detctors are set
to be zero automatically in a single framework. Pairwise similarity constraints are em-
ployed to force the detected parts from the same action to be more similar and consistent.
Our method is tested on two benchmarks and experiment results show its effectiveness in
action recognition. In the future, we will investigate novel fusion strategies to combine
part-based features with other outstanding features for recognizing more complex actions.
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