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Abstract. In this paper, we examine a design method for stabilizing modified Smith
predictors for non-square multiple time-delay plants. The modified Smith predictor is
well known as an effective time-delay compensator for a plant with large time-delay, and
several papers considered the problem to design modified Smith predictors for time-delay
plants. At the same time, another important control problem is the parameterization prob-
lem, the problem of finding all stabilizing controllers for a plant. By several studies, the
parameterization of all stabilizing modified Smith predictors for unstable time-delay plants
was clarified. In some cases, the plant includes multiple time-delays, but those parame-
terizations cannot be applied to multiple time-delay plants. After that, the parameteriza-
tion for multiple-input/multiple-output multiple time-delay plants was proposed. Since it
is still not including the parameterization for non-square multiple-input/multiple-output
multiple time-delay plant, it needs further study. In this paper, we propose the parame-
terization of all stabilizing modified Smith predictors for non-square multiple time-delay
plants. And we show the characteristics of control system using the parameterization of
all stabilizing modified Smith predictors.
Keywords: Smith predictor, Parameterization, Non-square plant, Multiple time-delay

1. Introduction. In this paper, we examine a design method for modified Smith pre-
dictors for non-square multiple time-delay plants. The Smith predictor was proposed by
Smith in order to overcome time-delay [1]. And it is known as an effective time-delay
compensator for a stable plant with large time-delay [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
However, the Smith predictor in [1] cannot be used for plants having an integral mode,
because a step disturbance will result in a steady state error [2, 3, 4]. In order to over-
come this problem, Watanabe and Ito [4], Astrom et al. [9], and Matusek and Micic [10]
proposed a design method for a modified Smith predictor for time-delay plants with an in-
tegrator. Watanabe and Sato expanded the result in [4] and proposed a design method for
modified Smith predictors for multivariable systems with multiple time-delays in inputs
and outputs [5].

Because the modified Smith predictor cannot be used for unstable plants [2, 3, 4, 5, 6,
8, 7, 9, 10, 11], De Paor [6], De Paor and Egan [8] and Kwak et al. [12] proposed a design
method for modified Smith predictors for unstable plants. Thus, several design methods
of modified Smith predictors have been published.

On the other hand, another important control issue is the parameterization problem,
which is the problem of finding all stabilizing controllers for a plant [13, 14, 15, 16, 17,
18, 19, 20, 21]. The parameterization of all stabilizing controllers for time-delay plants
was considered in [20, 21], but that of all stabilizing modified Smith predictors was not
obtained. After that, Yamada and Matsushima [22] gave a resolution. They showed the
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parameterization of all stabilizing modified Smith predictors for minimum-phase time-
delay plants. Then, Yamada et al. [23] expanded the result in [22] and clarified the
parametrization of all stabilizing modified Smith predictors for non-minimum-phase sys-
tems. And then, Yamada et al. [24] clarified the parameterization of all stabilizing modi-
fied Smith predictors for multiple-input/multiple-output non-minimum-phase time-delay
plants. Since the parametrization of all stabilizing modified Smith predictor is obtained,
we can express previous studies of modified Smith predictors in a uniform manner. In
addition, modified Smith predictors could be designed systematically. In some cases, the
system includes multiple time-delays. And, the parameterizations in [22, 23, 24] cannot
be applied to multiple time-delay plants. After that, Mai and Yamada [25] expanded
that parameterizations [22, 23, 24], and proposed the parameterization of all stabilizing
modified Smith predictors for multiple-input/multiple-output non-minimum phase mul-
tiple time-delay plants. However, there still remains the problem that it is not including
the parameterization for non-square multiple-input/multiple-output plant. Since there are
many actual plants which are non-square multiple-input/multiple-output, it is important
to obtain the parameterization of all stabilizing modified Smith predictors for non-square
multiple time-delay plants.

The purpose of this paper is to propose the parameterization of all stabilizing modified
Smith predictors for non-square stable multiple time-delay plants. First, the structure
and necessary characteristics of modified Smith predictors are defined. Next, the param-
eterization of all stabilizing modified Smith predictors for non-square multiple time-delay
stable plants is proposed.

2. Problem Formulation. Consider the control system in Figure 1. Here, G1(s)e
−sT1 +

G2(s)e
−sT2 is the multiple time-delay plant, Ti > 0 (i = 1, 2), Gi(s) ∈ Rm×p(s) (i = 1, 2),

m ≤ p, C(s) is the controller, y ∈ Rm is the output, u ∈ Rp is the control input, d ∈ Rm

is the disturbance and r ∈ Rm is the reference input. We assume that Gi(s) ∈ Rm×p(s)
(i = 1, 2) is coprime, that is, Gi(s) (i = 1, 2) is controllable and observable. In addition,
Gi(s) ∈ Rp×p(s) (i = 1, 2) is assumed to satisfy rank Gi(s) = m (i = 1, 2). Without loss
of generality, T1 ̸= T2 is satisfied. Note that for easy explanation, the plant is assumed to
have only 2 time-delays.
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Figure 1. Feedback control system for G1(s)e
−sT1 + G2(s)e

−sT2

According to past studies, the modified Smith predictor C(s) for G1(s)e
−sT1+G2(s)e

−sT2

is decided by the form:

C(s) = C1(s)
{
I + C2(s)e

−sT1 + C3(s)e
−sT2

}−1
, (1)

where C1(s) ∈ Rp×m(s), C2(s) ∈ Rm×m(s) and C3(s) ∈ Rm×m(s). In addition, using the
modified Smith predictor in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], the transfer function from
r to y of the control system in Figure 1, written as

y =
{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1 {(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}
r (2)



ICIC EXPRESS LETTERS, VOL.10, NO.1, 2016 207

has a finite number of poles. That is, the transfer function from r to y of the control
system in Figure 1 is written as

y =
(
Ḡ1(s)e

−sT1 + Ḡ2(s)e
−sT2

)
r, (3)

where Ḡi(s) ∈ RHm×m
∞ (i = 1, 2). Therefore, we call C(s) the modified Smith predictor

if C(s) takes the form of (1) and the transfer function from r to y of the control system
in Figure 1 has a finite number of poles.

The problem considered in this paper is to obtain the parameterization of all modified
Smith predictors C(s) that make the control system in Figure 1 stable. In Section 3, we
propose the parameterization of all stabilizing modified Smith predictors C(s) for stable
plants.

3. The Parameterization for Stable Plants. The parameterization of all stabilizing
modified Smith predictors for stable plant G1(s)e

−sT1 + G2(s)e
−sT2 is summarized in the

following theorem.

Theorem 3.1. G1(s)e
−sT1 + G2(s)e

−sT2 is assumed to be stable. The parameterization of
all stabilizing modified Smith predictors C(s) takes the form

C(s) = Q(s)
{
I −

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
Q(s)

}−1
, (4)

where Q(s) ∈ RHp×m
∞ is any function.

Proof: First, the necessity is shown. That is, we show that if the controller C(s) in (1)
makes the control system in Figure 1 stable and makes the transfer function from r to y
of the control system in Figure 1 have a finite number of poles, then C(s) takes the form
of (4). From the assumption that the controller C(s) in (1) makes the transfer function
from r to y of the control system in Figure 1 have a finite number of poles,{

I +
(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1 (
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

=
(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C1(s)

{
I + (C2(s) + G1(s)C1(s)) e−sT1

+ (C3(s) + G2(s)C1(s)) e−sT2
}−1

(5)

has a finite number of poles. This implies that

C2(s) = −G1(s)C1(s) (6)

and

C3(s) = −G2(s)C1(s) (7)

are necessary, that is:

C(s) = C1(s)
{
I −

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C1(s)

}−1
. (8)

From the assumption that C(s) in (1) makes the control system in Figure 1 stable,{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1 (
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s), C(s)

{
I+

(
G1(s)

e−sT1 +G2(s)e
−sT2

)
C(s)

}−1
,

{
I+

(
G1(s)e

−sT1 +G2(s)e
−sT2

)
C(s)

}−1 (
G1(s)e

−sT1 + G2(s)

e−sT2
)

and
{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1
are stable. From simple manipula-

tion, (6) and (7), we have{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1 (
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

=
(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C1(s), (9)

C(s)
{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1
= C1(s), (10){

I +
(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1 (
G1(s)e

−sT1 + G2(s)e
−sT2

)
=

{
I −

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C1(s)

} (
G1(s)e

−sT1 + G2(s)e
−sT2

)
(11)
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and{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1
= I −

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C1(s). (12)

It is obvious that the necessary condition for all the transfer functions in (9), (10), (11)
and (12) to be stable is C1(s) ∈ RHp×m

∞ . Using Q(s) ∈ RHp×m
∞ , let C1(s) be

C1(s) = Q(s), (13)

we find that C(s) takes the form of (4). Thus, the necessity has been shown.
Next, the sufficiency is shown. That is, if C(s) takes the form of (4) and Q(s) ∈ RH∞,

then the controller C(s) makes the control system in Figure 1 stable and makes the
transfer function from r to y of the control system in Figure 1 have a finite number of
poles. From simple manipulation, we have{

I +
(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1 (
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

=
(
G1(s)e

−sT1 + G2(s)e
−sT2

)
Q(s), (14)

C(s)
{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1
= Q(s), (15)

{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1 (
G1(s)e

−sT1 + G2(s)e
−sT2

)
=

{
I −

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
Q(s)

} (
G1(s)e

−sT1 + G2(s)e
−sT2

)
(16)

and{
I +

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
C(s)

}−1
= I −

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
Q(s). (17)

From the assumption that G1(s)e
−sT1 + G2(s)e

−sT2 is stable and Q(s) ∈ RHp×m
∞ , (14),

(15), (16) and (17) are all stable. In addition, because the transfer function from r to
y of the control system in Figure 1 takes the form (14) and Q(s) ∈ RH∞, the transfer
function from r to y of the control system in Figure 1 has a finite number of poles.

We have thus proved Theorem 3.1.
Next, we explain the control characteristics of the control system using the parameteri-

zation of all stabilizing modified Smith predictors in (4). Due to (4), the transfer function
from the reference input r to the output y of the control system in Figure 1 takes the
form

y =
(
G1(s)e

−sT1 + G2(s)e
−sT2

)
Q(s)r. (18)

Therefore, for the output y to follow the step reference input r without steady state error,

(G1(0) + G2(0)) Q(0) = I (19)

must be satisfied.
The disturbance attenuation characteristic is as follows. The transfer function from the

disturbance d to the output y of the control system in Figure 1 is given by

y =
{
I −

(
G1(s)e

−sT1 + G2(s)e
−sT2

)
Q(s)

}
d. (20)

Therefore, to attenuate the step disturbance d effectively, Q(s) must satisfy

(G1(0) + G2(0)) Q(0) = I. (21)

4. Conclusions. In this paper, we proposed the parameterization of all stabilizing mod-
ified Smith predictors for non-square multiple time-delay stable plants. The control char-
acteristics of the control system using the parameterization of all stabilizing modified
Smith predictors were also given.
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