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Abstract. Software behavior mining is a very meaningful work. Finding that desirable
patterns can assist the program maintainers to comprehend the software adequately. Al-
though the existing high utility pattern mining algorithms can discover all the patterns
satisfying a given minimum utility, it is often difficult for users to set a proper minimum
utility. In this paper, an efficient algorithm TUPP is presented to mine top-k high utility
path patterns in software dynamic call graph. In TUPP, software paths are extracted
from software dynamic call graph and the utility of functions is defined firstly. Secondly,
a novel structure called PUAList is put forward. The structure stores both the adjacency
items and the utility information which is heuristic information for pruning the search
space. In addition, two strategies for raising the threshold and one pruning strategy are
incorporated into TUPP to increase the efficiency. At last, our experiments are con-
ducted on both synthetic and real datasets. The results show that TUPP incorporating
the efficiency-enhanced strategies demonstrates impressive performance.
Keywords: Software dynamic call graph, Top-k pattern, Software behavior mining

1. Introduction. Improving software quality is an important goal of software engineer-
ing because software plays a critical role in businesses, governments and societies. Some
sequential pattern mining algorithms have been successfully adopted to some complex be-
haviors analysis [1]. Software behavior learning is one of the most important tasks in all
stages of software development lifecycle [2]. When a software runs, it will produce a trace
which can be considered as a software dynamic call graph. Some interesting behavior
patterns can be mined by analyzing these dynamic program traces. As a result, how to
mine desirable patterns from large amounts of software traces is a very meaningful work.

In pattern mining, users generally set a minimum threshold to extract crucial patterns
from the databases. However, it is not easy for the users to determine an appropriate
minimum threshold. To address this issue, the concept of extracting top-k patterns had
been proposed in [4, 5] to select the patterns with the highest frequency. This makes
it much easier and more intuitive than determining a minimum support. Nevertheless,
the traditional frequency-based sequential pattern mining algorithms assume that all the
items have the same significance. Therefore, some patterns with high importance but low
frequency may not be discovered by using these approaches. To handle this, the high
utility pattern mining [3] model was proposed. However, the downward-closure property
in frequency-based mining cannot be directly used in utility mining. Therefore, it is hard
to directly apply the techniques of top-k frequent pattern mining into top-k utility pattern
mining. Top-k utility itemset mining (TKU) [6] which was an algorithm based on two
phase, was proposed for top-k high utility pattern mining. In phase I, TKU generated
potential top-k high utility patterns (PKHUPs) with the help of the Pre-Evaluation (PE)
strategy and a global UP-Tree. In phase II, TKU calculated real utility for each candidate
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starting from one with the highest estimated utility. Yin et al. [7] proposed an efficient
algorithm named TUS for mining top-k high utility sequential patterns from utility-based
sequence databases. In their approach, a pre-insertion and a sorting strategy had been
introduced to raise the minimum utility threshold. Ryang and Yun [8] put forward an
efficient algorithm for mining top-k high utility patterns. They also suggested three
strategies that could raise the minimum utility threshold effectively. The three strategies
made a considerable contribution to reducing the search space.

Considering that the items in software function call sequences are ordered and con-
secutive, the general sequential pattern mining algorithms are not applicable. The path
sequential pattern has a property that the items appearing in the pattern must be adjacent
with respect to the underlying ordering as defined in the pattern. Zhou et al. [9] proposed
a Two-Phase utility mining method to discover high utility path traversal patterns from
weblog databases. Due to that their upper bound is loose, the number of candidates is
large. Ahmed et al. [10] provided a very efficient algorithm for utility-based web path
traversal mining by using a pattern growth sequential mining approach. However, longer
patterns with less item utility may result in higher values. For this reason, Thilagu and
Nadarajan [11] proposed an efficient algorithm to discover effective web traversal patterns
based on average utility model. To reveal better results and resolve the problem occurring
due to pattern length, the algorithm mined high average utility patterns rather than pat-
terns with actual utility. Despite all this, the algorithm cannot deal with the sequences
with both forward and backward references. Ahmed et al. [12] proposed a framework to
mine high utility web access by two new tree structures, avoiding the level-wise candidate
generation and test methodology.

In this paper, combining utility pattern mining with path pattern mining, we propose
an efficient approach TUPP to mine top-k high utility path patterns. Considering the
characteristics of software, the utility of functions is defined. A novel structure called
PUAList is proposed which stores both the adjacency items and the utility information.
Two strategies for raising the threshold and one pruning strategy are put forward. The
experimental results show that TUPP has better efficiency.

The remaining of the paper is organized as follows. Section 2 describes the definitions.
Section 3 presents TUPP algorithm. Section 4 is experiment analysis. The paper is
concluded in Section 5.

2. Basic Definitions. When a system executes a task, it traverses a trace in the code to
perform the requested functions. The trace identifies the methods called by the program of
the execution which is the dynamic call graph G. The node of G has an utility which is the
importance of the node. If we traverse G in Depth-First way, all function call paths from
the root to leaf will be obtained. These paths produce a database D = {S1, S2, . . . , Sn}
which is a set of sequences.

Definition 2.1. The utility of node i in dynamic call graph G, is denoted as u(i, G). The
utility value presents the importance of function i in the software dynamic call graph G.
It can be defined as follows.

u(i, G) = w1 × deg(i) + w2 × b(i). (1)

The deg(i) is the degree about node i. The importance of position about node i,
denoted as b(i), is the result that all paths number through the node i divides the total
paths number of graph G. The entropy weight of the two properties are w1 and w2.
It can be calculated as follows. Assuming we have m properties and n objects of the
evaluation, it can be presented by a evaluation matrix R in the view of the combination
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of quantitative and qualitative.

R =

∣∣∣∣∣∣∣∣
r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
...

rm1 rm2 · · · rmn

∣∣∣∣∣∣∣∣. (2)

Assume graph G has n nodes, so R is a two rows and n columns matrix. By matrix R
we can define the entropy of the ith property Hi. Furthermore we can define the entropy
weight of the ith property wi.

Hi = −k
n∑

j=1

fij ln fij.

fij =
rij

n∑
i=1

rij

and k =
1

ln n

 wi =
1−Hi

m−
m∑

i=1

Hi

. (3)

Definition 2.2. Software Function Call Path (SFCP). Software Function Call Path is a
sequence of consecutive nodes from the root node to leaf node of a dynamic call graph. It
can be expressed as SFCP = < froot, f2, . . . , fleaf >, in which each element fk means the
k-th node in the SFCP (k ≥ 1, k is an integer) and there exists call relationship between
fk and fk+1.

Definition 2.3. Path pattern P1 =< e1, e2, . . . , en > is considered as a subsequence of
software function call path P2 =< f1, f2, . . . , fm > if there exist integers 1 ≤ i1 < i2 <
i3 < i4 · · · < in ≤ m, where e1 = fi1, e2 = fi2 , . . . , en = fin.

Remark 2.1. It should be noted that the path pattern in Definition 2.3 satisfies that items
appearing in a software function call path containing the path pattern must be adjacent
with respect to the underlying order as defined in the path pattern. A path pattern α =<
α1, α2, . . . , αn > is called a sub path pattern of another path pattern β =< β1, β2, . . . , βm >
if there exist integers 1 ≤ i1 < i2 < i3 < i4 · · · < in ≤ n ≤ m, where α1 = βi1, α2 = βi2,
. . ., αn=βin. We express this relation as α ⊆ β.

Definition 2.4. The utility of software function call path Si, denoted as util(Si), is the
sum of the utilities of all the items in Si and the total utility of D is the sum of the utilities
of all the paths in D.

Definition 2.5. Given a path pattern X and a software function call path (or path pattern)
S with X ⊆ S, the set of all the items after X in S is denoted as S/X. If X ′ is an
extension of X, (X ′ −X) = (X ′/X).

Definition 2.6. For a path pattern X =< i1, i2, . . . , in > (X ⊆ Si and |X| represents the
length of X), its utility in a software function call path Si denoted as u(X,Si) and the
utility of X denoted as u(X) are defined respectively as follows.

u(X, Si) =
∑

X⊆Si∧i∈X

u(i, Si). u(X) =
∑

Si∈D∧X⊆Si

u(X, Si). (4)

Definition 2.7. PUAList. Each element in the PUAList of path pattern X contains four
fields that are named sid, aitem, util and rutil, representing a software function call path
Si containing X, adjacent item of X, the utility of X and the remaining utility of X in
Si respectively.

Lemma 2.1. Given the PUAList of path pattern X, if the sum of all the utils and rutils
in the PUAList is less than a given ε (The least utility of the top-k high utility path
patterns), any extension X ′ of X will not be included in top-k high utility path patterns.
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Proof: Suppose id(S) denotes the sid of S, X.sids denotes the sid set in the PUAList
of X, and X ′.sids that is in X ′, and then: For ∀ software function call path S ⊇ X ′

∵ X ′ is an extension of X ⇒ (X ′ −X) = (X ′/X)
X ⊂ X ′ ⊆ S ⇒ (X ′/X) ⊆ (S/X)

∴ u(X ′, S) = u(X, S) + u((X ′ −X), S)
= u(X, S) +

∑
iϵ(X′/X)

u(i, S)

≤ u(X,S) +
∑

iϵ(S/X)

u(i, S)

= u(X, S) + rutil(X, S)
∵ X ⊂ X ′ ⇒ X ′.sids ⊆ X.sids
∴ u(X ′) =

∑
id(S)ϵX′.sids

u(X ′, S)

≤
∑

id(S)ϵX′.sids

(u(X, S) + rutil(X, S))

≤
∑

id(S)ϵX.sids

(u(X,S) + rutil(X,S)) < ε

Definition 2.8. Item extension order. Given a sequence s and two items a, b. Let s + a
and s + b be the sequences of a and b extended to s respectively, where s + a ̸= s + b. We
say a is prior to b, denoted as a > b, if the following conditions are true:∑

s⊂S∧s.aitem=a

rutil(s, S) >
∑

s⊂S∧s.aitem=b

rutil(s, S).

3. The TUPP Algorithm. In this section, we specify and present an efficient algorithm
TUPP for mining top-k high utility path patterns. Instead of using a user specified
minimum utility, TUPP engages a structure named TUPPList to maintain the top-k high
utility path patterns on-the-fly. TUPPList is a fixed-size sorted list which is used to
maintain the top-k high utility path patterns dynamically. In TUPPList, a minimum
utility ε is set to prune the unpromising candidates in the mining process. In the previous
algorithms, the TUPPList is empty and ε is set to 0 initially. Although the previous
algorithms correctly extract the top-k high utility patterns, they traverse too many invalid
pattern candidates since the minimum threshold starts from 0. This directly degrades the
performance of the mining task. To overcome this problem, we propose an effective
strategy for raising the minimum utility threshold.

Strategy 1: Pre-insertion. The pre-insertion strategy inserts the utilities of the 1-
length patterns to the TUPPList before the mining process.

After the software function call sequences are successfully stored in the memory, it needs
to calculate the utility of each sequence. In this phase, we use a hash table to record the
utility of every distinct item in the sequences. The pre-insertion strategy effectively raises
the minimum threshold to a reasonable level before mining, and prevents from generating
unpromising candidates. The algorithm TUPP follows a pattern-growth method to mine
the expected patterns. What item extension order should we adopt? In threshold-based
high utility pattern mining, there is no such concern. However, in the top-k framework,
the order of extending items does matter. Since ε is dependent on the candidates inside
the TUPPList, we should put the high utility candidates to TUPPList as soon as possible
so that ε increases to ε′ shortly. Now we present item extension order strategy.

Strategy 2: Item extension order. Given a pattern P , and the adjacent items that
can be extended to P are e1, e2, . . . , en. Then ek1 , ek2 , . . . , ekn is the order to be extended
to P , where ek1 > ek2 > · · · > ekn .
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Algorithm 1: TUPP Algorithm

Input: software dynamic call graph G, k
Output: Top-k high utility path patterns
1. obtain all paths by traversing the graph G in DFS way and store these paths in D.
2. calculate the utility for every node of G by Equation (1), and attach utility
to every item of paths in database D.
3. calculate utility of different items in D, and put top-k highest utility items
to TUPPList.// strategy 1
4. put the items whose sum of utils and rutils value is no less than ε to PTUPP1
5. PUAL1s ← construct the PUALists for all potential high utility l-length patterns
of PTUPP1
6. sort PTUPP1 according to strategy 2
7. call procedure TUPP-Gen(PTUPP1)
8. return TUPPList

Procedure: TUPP-Gen
Input: PTUPP //the set of potential high utility path patterns
9. for each element Ex ∈ PTUPP do
10. if (u(Ex) > TUPPList.ε) then
11. Ex → TUPPList and remove the pattern with the least utility of TUPPList
12. if (sum utils and rutils of Ex > TUPPList.ε) then //the pruning strategy
13. CanItems ← sort the items of Ex.PUAList.aitem whose sum of utils and
rutils exceed TUPPList.ε //the strategy 2
14. for each element Ey ∈ CanItems and Ey ∈ PTUPP1 do
15. exPUALs = exUNLs + Combine(Ex, Ey)
16. TUPP-Gen(exPUALs)

Procedure: Combine
Input: pattern Px; pattern y
17. for each element x ∈ Px.PUAList do
18. if(y.PUAList.sids.contains(x.sid)) then
19. xy = <x.sid, y.PUAList.aitem, x.util + y.util, y.rutil>
20. append xy to Pxy.PUAList

Exploiting the two strategies and the pruning strategy presented in Lemma 2.1, TUPP
is described as Algorithm 1. In line 2, calculate utility for all nodes of G by Equation
(1). Lines 5 to 8 describe the process of calculating the potential high utility of 1-length
patterns. We put these potential 1-length path patterns in the set PTUPP1 and construct
PUALists for them. Then a sub-procedure TUPP-Gen is devised to mine top-k high utility
path patterns efficiently from D. Lines 9 to 16 present the sub-procedure TUPP-Gen which
is a recursive process. For each pattern Ex in PTUPP, if the utility of Ex exceed the
least utility in TUPPList, then insert the pattern to TUPPList and remove the pattern
with the least utility. Only when the sum of utils and rutils of pattern exceeds the least
utility of TUPPList, can it be extended further for possibly producing the top-k high
utility path patterns.

Example 3.1. For example, Figure 1 represents the path sequences. Assume k is 3 and
the utilities of items a, b, c, d, e and f are 3, 8, 12, 12, 10 and 3. At beginning, the top-3
path patterns of TUPPList is {c, d, e}. The sum of utils and rutils of the items is 34,
45, 20, 34, 13 and 8 respectively. As the sum of util and rutil of f is less than 10, the
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PTUPP1 is {b, a, d, c, e} in order. Next, we take b for example to illustrate the extending
process. The aitems in PUAList of b is {c, d} and the sum of utils and rutils is 5 and 40
respectively. As the least utility in TUPPList is 10 currently, the item c cannot be extended
to b. The patterns in bold in Figure 2 are unnecessary to be extended. The utility of pattern
< bd > is 18. Therefore, put < bd > into TUPPList and remove pattern < e >. All the
other patterns can be similarly processed. The results are {< bd >, < bdc >,< abdc >}.

Figure 1. The database Figure 2. Extending process

4. Experiment. In this section, we evaluate the performance of TUPP on a variety of
datasets. Since there is no algorithm that can solve the top-k high utility path pat-
terns mining, and it is not easy to upgrade the existing method such as [7] either, we
thus compare the four algorithms. They are TUPP, TUPPNaive which is a baseline ap-
proach, TUPPS1 incorporating strategy 1 and TUPPS2 incorporating strategy 2. These
algorithms were implemented in Java and the experiments were performed on 64 bit Win-
dows 7 ultimate, Xeon CPU E5-2603 @1.80GHz, 8G Memory. The synthetic datasets
were generated by IBM data generator. The real database is mushroom which can be
downloaded from FIMI Repository [13]. The weight distributions of items in datasets
are generated from Gauss distribution (µ = 5, σ = 1.5) [14]. We abbreviate the average
length of sequences as Ave-L.

Running Time. We first ran four algorithms on datasets mushroom and T40I10D20K
varying k to assess the influence of k on execution time and candidates number. As it
can be seen in Figure 3 and Figure 4, we can find that the running time of the four
algorithms gets increased by increasing the k. Besides, the gap between TUPP and
TUPPNaive increases with the increasing of k. The results also show that TUPP, TUPPS1
and TUPPS2 are generally faster than TUPPNaive. That indicates the proposed three
optimization measures, including pruning strategy, sorting and pre insertion, are effective
for top-k pattern mining. From the experimental results given in Figure 5 and Figure
6, it is also observed that the number of candidate patterns is increasing gradually by
increasing the k. We understand that the number of candidate patterns produced by
TUPP is greatly reduced compared to the TUPPNaive and TUPPS1. This benefits from
superior pruning and sorting strategies of TUPP, which can raise the threshold more
quickly and prune more unpromising patterns.

Scalability. We studied the scalability of TUPP algorithm on running time by varying
the number of sequences in the dataset and the average length of sequences. Figure 7 and
Figure 9 show the time cost and candidates by varying the number of sequences from 2000
to 10000 when k is 50. Figure 8 and Figure 10 show the trend of the running time and the
candidates of four algorithms with respect to different average length of sequences varying
from 6 to 14 based on |D| = 20000 when k is 100. From the results, it is observed that
the scalability of TUPP outperforms the three algorithms. This is because TUPPNaive
starts the mining from 0 while TUPP does not. The sorting strategy more directly prunes
unpromising branches than the pre-insertion. The sorting strategy always traverses the
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Figure 3. Time cost vary-
ing K on mushroom
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Figure 4. Time cost vary-
ing K on T40I10D20K

2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16
 

 

#C
an

di
da

te
s 

(×
10

4 )

K

 TUPP
 TUPPS2
 TUPPS1
 TUPPNaive

Figure 5. Candidates vary-
ing K on mushroom
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Figure 6. Candidates vary-
ing K on T40I10D20K
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Figure 7. Time cost under
different database sizes
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higher estimated utility candidates first. This guarantees ε raising to ε′ shortly. So when
the datasize is large, sorting is better than pre-insertion.

5. Conclusions. In this paper, we have proposed an efficient algorithm named TUPP for
mining top-k high utility path patterns from software dynamic call graph. We have defined
the utility of functions and developed a new pruning strategy for effectively filtering the
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unpromising candidates. Moreover, a pre-insertion and a sorting strategy have been
introduced to raise the minimum utility threshold. From the experiments, we can know
that the mining performance is enhanced significantly since both the search space and the
number of candidates are effectively reduced by the proposed strategies. In the future,
we plan to apply our proposed algorithm in some real softwares.
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