
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 1, January 2016 pp. 235–241

A SENTIMENT ANALYSIS PARALLEL ALGORITHM
BASED ON MAPREDUCE FOR NETWORK INFORMATION

Qicheng Liu and Ying Cong

School of Computer and Control Engineering
Yantai University

No. 32, Qingquan Road, Laishan District, Yantai 264005, P. R. China
{ ytliuqc; congying8010 }@163.com

Received July 2015; accepted October 2015

Abstract. A sentiment analysis parallel algorithm based on MapReduce for network
information with an improved I/O method is designed to improve the performance of the
traditional algorithm when dealing with massive data. Considering the characteristics of
network information, especially the microblog information, we adopt the sentiment dic-
tionary, tf-idf and weighted Naive Bayes algorithms. The results show that the algorithm
is effective and in the condition of large amounts of data, the parallel algorithm is effi-
cient against sentiment analysis for microblog information.
Keywords: Microblog information, Parallel sentiment analysis, MapReduce model, Im-
proved I/O method

1. Introduction. Network information which is represented by the microblog informa-
tion contains rich emotion information. Sentiment analysis for network information, espe-
cially for microblog information has become a new direction. Currently, sentiment analysis
methods mainly involve two methods based on machine learning [1] and semantic knowl-
edge [2]. Pang et al. applied the machine learning algorithms to sentiment analysis firstly
[3]. Zhu et al. proposed semantic similarity and semantically related field to analyze the
sentiment tendencies [4]. And their work is representative.

After lots of research, some scholars found the results of sentiment analysis are affected
by the feature representation algorithms, weighting formulas and classifiers [5-7]. Some
researchers regarded nouns, adjectives, adverbs and n-gram as features respectively and
compared the analysis results [8]. Paper [9] pointed out that the feature weighting algo-
rithm affects the precision and recall rate directly. Meanwhile, in order to improve the
efficiency, many scholars have used MapReduce model to deal with massive data [10]. For
example, the algorithms based on vector space model on Hadoop platform [11] and the
parallel support vector machine method [12] have been proposed. About sentiment anal-
ysis, parallel Rocchio and KNN (K-Nearest Neighbor) algorithms based on MapReduce
have been designed.

During the previous studies of sentiment analysis, the researchers rarely considered the
differences of microblog information and normal text. And all the key steps of sentiment
analysis are implemented in parallel which is not common. In this paper, we consider
the characteristics of microblog information and innovatively design a sentiment analysis
parallel algorithm based on MapReduce with an improved I/O method which is different
from our previous method and all the key steps are implemented in parallel.

In Section 1, we introduce some related work. And in Section 2, the parallel algorithm
is designed. And further we verify the effectiveness and efficiency of the parallel algorithm
in Section 3. At last, we make a conclusion.

235

236 Q. LIU AND Y. CONG

2. Sentiment Analysis Parallel Algorithm for Microblog Information.

2.1. Problem statement. Assuming that the predefined set of emotion category of texts
is

C = {c1, c2}
in which c1 and c2 indicate positive and negative emotion respectively. The text set is

D = {d1, d2, . . . , dn}
The task of sentiment analysis is analyzing the emotion category of di (i = 1, 2, . . . , n)

in text set and assigning an emotion category which is labeled as c1 or c2.
Compared to the normal text, network information has its own characteristics. In this

paper, we selected algorithms purposefully and cut massive microblog information into
splits to calculate respectively based on MapReduce.

2.2. Parallel algorithm design of sentiment analysis based on MapReduce.

2.2.1. Emotional feature extraction parallel algorithm. Emotional feature extraction is ex-
tracting the feature words. Different from normal texts, microblog information is shorter.
So we designed parallel feature extraction algorithm based on the expanded HowNet senti-
ment dictionary. The input and the output of the parallel algorithm based on MapReduce
in this paper are different from our previous work. In the following parallel algorithm,
the emotion words are just extracted without being counted.

Algorithm 1.
Step 1. Read the words in the sentiment dictionary and save them in emotmap. Texts

are segmented to words and the emotion words are extracted in Map process.
Input: Text of microblog information
Output: < textName,w >
(1) Text is segmented and the segmented words are saved in segArray
(2) for each word in segArray do

if the word is the name of the text then
textName = word

else if word in emotmap then
wordlist. add (word)

(3) for i=0 to wordlist. length do
Output < textName, wordlist.get(i) >

Step 2. The results are merged in Reduce process.
Input: < textName, list(w) >
Output: The global < textName, w >
(1) for each w in list(w) do

global-wordlist. add (w)
(2) for j = 0 to global-wordlist.length do

Output < textName, global-wordlist.get(j) >

2.2.2. Feature vector weighting parallel algorithm. Feature weighting is calculating the
weight of the feature word. In this paper, parallel tf-idf algorithm based on MapReduce
with the improved I/O method which is different from our previous work is designed. The
value of tf-idf is the weight of feature word and it is calculated as Formula (1).

tf -idf = tf∗idf (1)

In Formula (1), tf (term frequency) represents word frequency, which is calculated in
Formula (2). And the idf (inverse document frequency) is calculated as Formula (3).

tf(w, d) =
n(w, d)∑

i

n(wi, d)
(2)

ICIC EXPRESS LETTERS, VOL.10, NO.1, 2016 237

In Formula (2), n(w, d) is the number of the emotion term w appearing in text d and
the

∑
i n(wi, d) is the total number of all the feature words appearing in text d.

idf(w) = log

(
|D|

|D(w)|

)
(3)

In Formula (3), |D| represents the total number of texts, and |D(w)| indicates the
number of texts which contain w, the emotional feature word.

The feature weighting parallel algorithm is described in Algorithm 2.
Algorithm 2.
Step 1. Map reads the output of the test texts processed by Algorithm 1. Output the

global < textName,w >.
Step 2. The counting part is processed in Reduce. The total number of feature words

in the text and the number of each emotional feature word appearing in the text are
counted. So the value of tf can be calculated according to Formula (2).

Input: < textName, list(w) >
Output: < textName, (w, tf) >
(1) length = 0; HashMap map
(2) for each w in list(w) do

(2.1) length ++
(2.2) if w not in map then

map. put (w, 1)
else map. put (w, count(w)= count(w) + 1)

(2.3) tf = count (w)/length
(3) Output < textName, (w, tf) >

Step 3. The second Map selects the texts which contain the feature word. The input
is the output of the training texts processed by Algorithm 1.

Input: The global < textName,w >
Output: < w, textName (w) >
(1) for each w in the global < textName,w > do

(1.1) textList [textName]. add (w)
(1.2) if w is not in wordList then

wordList. add (w)
(2) for each w in wordList do

if w in textList [textName] then
Output < w, textName (w) >

Step 4. Reduce counts the number of the texts which contain the emotional feature
word. The number of training texts has been known, so the value of idf can be calculated
according to Formula (3).

Input: < w, list (textName (w)) >
Output: < w, idf >
(1) countText = 0
(2) for each textName in list (textName (w)) do

countText ++
(3) idf = log(trainCount/countText)
(4) Output < w, idf >

Step 5. The pairs < w, idf > are stored in the classifier file.
Step 6. The third Map reads < textName, (w, tf) >. Analyze the name of the text,

emotional feature word in this text and its tf value. Output < w, (textName, tf) >.
Step 7. Reduce reads tf and idf of the word and calculates tf-idf according to Formula

(1).
Input: < w, list(textName, tf) >, classifier file
Output: < (textName,w), tf -idf >

238 Q. LIU AND Y. CONG

(1) Analyze (textName, tf) and obtain textName and the tf of the word
(2) Read idf of the feature word from the classifier file
(3) Calculate tf -idf = tf∗idf
(4) Output < (textName, w), tf -idf >

2.2.3. Weighted Naive Bayes parallel algorithm. Naive Bayes algorithm has been used in
the studies of classification. And some scholars have improved the traditional algorithm
and proposed weighted Naive Bayes algorithms [14,15] to improve the performance. The
classification model is shown as Formula (4).

cwNB = arg max
ci∈C

{
p(ci)

n∏
j=1

p(wj|ci)
wt(wj)

}
(4)

In Formula (4), p(ci) represents the priori probability of the text di (w1, w2, . . ., wn)

belonging to category ci, and p(ci) = N(ci)∑
N(ci)

in which N(ci) is the number of training texts

belonging to ci and
∑

N(ci) is the total number of training texts. p(wj|ci) represents the
conditional probability of emotional feature word wj in text d belonging to the category

ci. p (wj|ci) =
N(wj ,ci)+1

N(ci)+|V | , in which N (wj, ci) is the number of texts containing feature

word wj in category ci and |V | is the smoothing factor and its value is the total number
of categories. wt (wj) is the weight of feature word wj.

The posterior probability is calculated through the priori probability multiplied by the
conditional probabilities. And the category with the maximum posterior probability will
be regarded as the classification result of the text. In this paper, a parallel algorithm
of microblog information sentiment analysis based on weighted Naive Bayes is designed.
The parallel algorithm is described in Algorithm 3.

Algorithm 3.
Step 1. In the training phase, the input of Map is the output of the training texts

processed by Algorithm 1. For each emotional feature word, select the training texts
which contain this term. The pseudo-code of Map function is the same as Step 3 in
Algorithm 2.

Step 2. The prior probability has been known in advance. The number of the texts
which contain the feature word in each category can be counted, and then the conditional
probability of the word will be achieved.

Input: < w, list(textName (w)) >
Output: < (w, ci), (p(ci), p(w|ci)) >
(1) countPos = 0; countNeg = 0; p(c1) = N(pos)/N ; p(c2) = N(neg)/N ;
(2) for each textName in list (textName) do

if text category is positive then
countPos ++

else if text category is negative then
countNeg ++

(3) p(w|c1) = (countPos + 1)/(N(pos) + 2)
p(w|c2) = (countNeg + 1)/(N(neg) + 2)

(4) Output < (w, ci), (p(ci), p(w|ci)) >
Step 3. The results of the training phase are stored in the classifier file.
Step 4. In the classification phase, Map reads < (textName, w), tf -idf > which is the

output of Algorithm 2. Output < textName, (w, tf -idf) >.
Step 5. The posterior probabilities are calculated. The category of text will be the

category with the largest posterior probability according to Formula (4).
Input: < textName, list (w, tf -idf) >, classifier file
Output: < textName, cwNB >
(1) for each w in list (w, tf -idf) do

ICIC EXPRESS LETTERS, VOL.10, NO.1, 2016 239

Analyze the tf-idf and get p(ci), p(w|ci) from classifier file

(2) cwNB = arg max
ci∈C

{
p(ci)

∏n
j=1 p (wj|ci)

tf -idf(wj)
}

(3) Output < textName, cwNB >

3. Experiments.

3.1. Experiment of algorithm’s precision. We adopt microblog information as the
datasets to test the parallel algorithm’s precision. In the experiment, cross-validation
method is used. The texts are divided into five groups with the same number randomly.
In each time, we regard one group as the test data and the other four groups as training
data to carry out the algorithm. Five experimental results are shown in Table 1.

Table 1. Precision of sentiment analysis parallel algorithm

Times 1 2 3 4 5 Average
Precision (%) 82.0 84.5 76.0 77.0 78.5 79.6

The table shows that under the condition of complex network information, the average
precision of parallel algorithm is 79.6%, which is better than the results of our previous
work. The result proves that the parallel algorithm proposed in this paper is more effective
for sentiment analysis of network information.

3.2. Comparative experiment between serial algorithm and parallel algorithm
based on MapReduce. In the experiment, we measure the time using serial algorithm
and parallel algorithm on 4-node cluster respectively for different sizes of data. The ex-
perimental results are shown in Table 2.

Table 2. Performance comparison between serial algorithm and parallel
algorithm

Experiment
Size of file

Running time of Running time of
Speedup

number serial program parallel program
1 356MB 544s 284s 1.92
2 667MB 897s 352s 2.55
3 1.3GB 1691s 579s 2.92
4 6.2GB 7568s 2203s 3.44

In comparison of the performance of the algorithms, speedup is used as the evaluation
indicator. From Table 2, we can find that with the data scale expanding, the time of the
programs is increasing. And the time of parallel algorithm is far less than serial algorithm,
especially when dealing with large-scale data. The speedup is higher and higher. The
results indicate that the parallel algorithm has good performance when processing large-
scale data.

3.3. Comparative experiment of speedup in different clusters. In the experiment,
we process the data of 6.2GB in the clusters with 2, 3 and 4 nodes respectively and record
the time of the parallel algorithm. Experimental results are shown in Figure 1.

We find that with the increase in the number of nodes, speedup is nearly linear. When
there are 2, 3 and 4 nodes in the cluster, their speedup is very close to 2, 3 and 4, and the
results are ideal. Because MapReduce needs to take some time to proceed task scheduling,
data segmentation and recombinant and nodes communication. So the parallel algorithm
has high efficiency and stability. Meanwhile, the parallel algorithm proposed in this paper
solved the speedup exception problem which appeared in our previous research.

240 Q. LIU AND Y. CONG

Figure 1. The speedup of different clusters

4. Conclusions. Considering the differences between network information which is rep-
resented by the microblog information and normal text information, we designed an effec-
tive sentiment analysis parallel algorithm based on MapReduce for network information.
In the condition of large amounts of data, the parallel algorithm has the better speedup,
which indicates the parallel algorithm’s high efficiency.

On the basis of this study, according to the characteristics of grammar and vocabulary
in different network information, we will find the best algorithms for different objects, in
that we can not only improve the efficiency of the algorithm but also can improve the
precision of sentiment analysis further.

Acknowledgment. This work is supported by the National Natural Science Foundation
of China (No. 61170224, 61403329); the Science and Technology Development Plan of
Shandong Province of China (No. 2012GGB01017); the Natural Science Foundation of
Shandong Province of China (No. ZR2012FL07, ZR2013FQ020).

REFERENCES

[1] F. Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol.34,
no.1, pp.1-47, 2002.

[2] P. D. Turney and M. L. Littman, Measuring praise and criticism: Inference of semantic orientation
from association, ACM Trans. Information Systems, 2003.

[3] B. Pang, L. Lee and S. Vaithynanthan, Thumbs up? Sentiment classification using machine learning
techniques, Proc. of the EMNLP, Philadelphia, pp.79-86, 2002.

[4] Y. Zhu, J. Min, Y. Zhou et al., Semantic orientation computing based on HowNet, Journal of Chinese
Information Processing, vol.20, no.1, pp.14-20, 2006 (in Chinese).

[5] B. Pang and L. Lee, Opinion mining and sentiment analysis, Foundations and Trends in Information
Retrieval, vol.2, nos.1-2, pp.1-135, 2008.

[6] T. Xia and Y. Chai, An improvement to TF-IDF: Term distribution based term weight algorithm,
Journal of Software, vol.6, no.3, pp.413-420, 2011.

[7] L. Lu, Y. Wang and W. Yang, A method of sentiment classification for Chinese comments based
on Naive Bayesian, Journal of Shandong University (Engineering Science), no.6, pp.7-11, 2013 (in
Chinese).

[8] H. Tang, S. Tan and X. Cheng, Research on sentiment classification of Chinese reviews based on
supervised machine learning techniques, Journal of Chinese Information Processing, vol.21, no.6,
pp.88-94, 2007 (in Chinese).

[9] Z. Zhai, H. Xu, B. Kang et al., Exploiting effective features for Chinese sentiment classification,
Expert Systems with Applications, vol.38, no.8, pp.9139-9146, 2011.

ICIC EXPRESS LETTERS, VOL.10, NO.1, 2016 241

[10] D. Jeffrey and G. Sanjay, MapReduce: A flexible data processing tool, Communications of the ACM,
vol.53, no.1, pp.72-77, 2010.

[11] X. Xiang, Y. Gao, L. Shang et al., Parallel text categorization of massive text based on Hadoop,
Computer Science, vol.38, no.10, pp.184-188, 2011 (in Chinese).

[12] Z. Zhao, Y. Xiang and J. Wang, Text classification based on parallel computing, Journal of Computer
Applications, vol.33, no.z2, pp.60-62, 2013 (in Chinese).

[13] Y. Yu, X. Xiang and L. Shang, Research on parallelized sentiment classification algorithms, Computer
Science, vol.40, no.6, pp.206-210, 2013 (in Chinese).

[14] K. Cheng and C. Zhang, Naive Bayesian classifiers using feature weighting, Computer Simulation,
vol.23, no.10, pp.92-94, 2006 (in Chinese).

[15] H. Zhang and S. L. Sheng, Learning weighted Naive Bayes with accurate ranking, Proc. of the 4th
IEEE International Conference on Data Mining, pp.567-570, 2004.

