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Abstract. In this paper, a single species logarithmic population model is investigated.
By applying the contraction mapping principle, a set of sufficient conditions is obtained
for the existence and uniqueness of almost periodic solution of the single species loga-
rithmic population model. The obtained sufficient conditions are given in terms of the
algebraic inequalities which are easily checked. The results of this paper are completely
new and generalize those of the previous studies.
Keywords: Single species logarithmic population model, Almost periodic solution, Ex-
ponential dichotomy, Existence and uniqueness

1. Introduction. It is well known that a periodically varying environment plays an im-
portant role in the evolutionary theory as the selective forces on models in a fluctuating
environment differing from those in a stable environment. Thus, the assumption of peri-
odicity on the parameters is a way of incorporating the periodicity of the environment [1].
However, in real life, the periodic parameters often undergo certain perturbations; thus
we think that almost periodic oscillatory parameters are more accordant with reality. In
recent years, numerous scholars pay much attention on the almost periodic oscillatory be-
havior of population models. For example, Lu and Ge [2] considered the almost periodic
solutions of the following single species neutral logarithmic model

dN(t)

dt
= N(t)

[
r(t) −

n∑
j=1

aj(t) lnN(t− σj(t)) −
n∑
j=1

bj(t)
d lnN(t− τj(t))

dt

]
. (1)

In 2010, Alzabut et al. [1] studied the almost periodic solutions for a delay logarith-
mic population model. In 2006, Chen [3] investigated the periodic solution and almost
periodic solutions of a neutral multi-species logarithmic population model. Recently, Alz-
abut et al. [4] considered the almost periodic solution for the following delay logarithmic
population model

ẋ(t) = x(t)[γ(t) − a1(t) ln x(t) − a2(t) ln x(t− τ(t))] (2)

where x denotes the size of population, γ(t) denotes the growth rate while there are plenty
of resources and there is no intra-specific competition for these resources, a1(t) stands for
the measure of the competition among the individuals, a2(t) is added to generalize the
model with the same interpretation of competitive effects and τ(t) denotes a maturation
delay in the sense that competition involves adults who have matured by an age of τ(t)
units. In details, one can see [4]. By applying the continuation theorem of coincidence
degree theory, the authors proved that system (2) has at least one positive almost periodic
solution.
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It shall be pointed out that ecosystem in the real world is continuously distributed
by unpredictable forces which can result in changes in the biological parameters such as
survival rates. Of practical interest in ecology is the question whether or not an ecosystem
can withstand those unpredictable disturbances which persist for a finite period of time
[5-10]. In the language of control variables, we call the disturbance functions as control
variables. Inspired by the discussion above, we will study the following single species
logarithmic population model with feedback controls as follows{

ẋ(t) = x(t)[γ(t) − a1(t) ln x(t) − a2(t) ln x(t− τ(t)) − b1(t)u(t) − b2(t)u(t− σ(t))],

u̇(t) = −α(t)u(t) + β(t) ln x(t) + ϱ(t) ln x(t− δ(t)),

(3)
where u denotes indirect feedback control variable.

The main aim of this article is to establish some sufficient conditions for the existence
and uniqueness of almost periodic solutions of (3). Our results are new and complement
those of the previous studies in [4]. To the best of our knowledge, it is the first time
to investigate the single species logarithmic population model with feedback controls by
contraction mapping principle. Let

m(f) = lim
T→+∞

1

T

∫ T

0

f(t)dt = 0,

where f(t) is almost periodic function. Throughout this paper, we make the following
assumptions.
(H1) γ(t), a1(t), a2(t), b1(t), b2(t), α(t), β(t), ϱ(t) are continuous real-valued nonnegative
almost periodic functions on R.
(H2) τ(t), σ(t) and δ(t) are nonnegative, continuously differentiable and almost periodic

functions on t ∈ R. Moreover, τ̇(t), σ̇(t) and δ̇(t) are all uniformly continuous on R with

inf
t∈R

{1 − τ̇(t)} > 0, inf
t∈R

{1 − σ̇(t)} > 0, inf
t∈R

{1 − δ̇(t)} > 0.

System (3) is supplemented with the initial value conditions

x(s) = φx(s) ≥ 0, s ∈ (−θ, 0], φx(0) > 0, sup
s∈(−θ,0]

φx(s) < +∞,

u(s) = φu(s) ≥ 0, φu(0) > 0, s ∈ (−θ, 0], (4)

where θ = maxt∈R{τ(t), δ(t), σ(t)}. It is easy to see that there exists a positive solution
y(t) = (x(t), u(t)) of system (3) satisfying the initial value condition (4).

The remainder of the paper is organized as follows. In Section 2, we present some
sufficient conditions for the existence and uniqueness of almost periodic solution of (3).
An example is given in Section 3. A brief conclusion is drawn in Section 4.

2. Existence and Uniqueness of Almost Periodic Solution. In this section, we will
establish sufficient conditions on the existence and uniqueness of almost periodic solutions
of (3). For convenience, we introduce some definitions and lemmas which will be used in
what follows.

Definition 2.1. [11,12] Let f(t) : R → Rn be continuous in t. f(t) is said to be almost
periodic on R, and if for any ε > 0, the set T (f, ε) = {δ : |f(t + δ) − f(t)| < ε,∀t ∈ R}
is relatively dense, i.e., for ∀ε > 0, it is possible to find a real number l = l(ε) > 0, for
any interval with length l(ε), there exists a number δ = δ(ε) in this interval such that
|f(t+ δ) − f(t)| < ε, for ∀ ∈ R.

Definition 2.2. Let z ∈ Rn and Q(t) be an n× n continuous matrix defined on R. The
linear system

dz

dt
= Q(t)z(t) (5)
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is said to admit an exponential dichotomy on R if there exist constants k, λ > 0, projection
P and the fundamental matrix Z(t) of (5) satisfying

||Z(t)PZ−1(s)|| ≤ ke−λ(t−s), for t ≥ s, ||Z(t)(I − P )Z−1(s)|| ≤ ke−λ(t−s), for ≤ s.

Lemma 2.1. [11,12] If the linear system (5) admits an exponential dichotomy, then almost
periodic system

dz

dt
= Q(t)z(t) + g(t) (g(t) is an n× 1 continuous matrix defined on R) (6)

has a unique almost periodic solution z(t) and

z(t) =

∫ t

−∞
Z(t)PZ−1(s)g(s)ds−

∫ +∞

t

Z(t)(I − P )Z−1(s)g(s)ds.

Lemma 2.2. [12,13] Let ai(t) be an almost periodic function on R and ai(t) > 0. Then
the system

dz

dt
= diag(−a1(t),−a2(t), · · · ,−an(t))z(t) (7)

admits an exponential dichotomy.

Remark 2.1. It follows from Lemma 2.2 that system (7) has a unique almost periodic
solution z(t) which takes the form

z(t) =

∫ t

−∞
Z(t)Z−1(s)g(s)ds =

(∫ t

−∞
e−

∫ t
s a1(u)dug1(s)ds, · · · ,

∫ t

−∞
e−

∫ t
s an(u)dugn(s)ds

)
.

Lemma 2.3. Let m be a positive integer and B be a Banach space. If the mapping
Γ : B → B is a contraction mapping, then Γ : B → B has exactly one fixed point in B,
where Γm = Γ(Γm−1).

By (H1), m(α) > 0. In view of Lemma 2.1, we have the following result.

Lemma 2.4. (x(t), u(t))T is an almost periodic solution of system (3) if and only if it is
an almost periodic solution of{

ẋ(t) = x(t)[γ(t) − a1(t) ln x(t) − a2(t) lnx(t− τ(t)) − b1(t)u(t) − b2(t)u(t− σ(t))],

u(t) =
∫ t

−∞ e
∫ t

s α(ζ)dζ [β(s) ln x(s) + ϱ(s) ln x(s− δ(s))]ds.
(8)

Obviously, (8) is equivalent to the following system

ẋ(t) = x(t)

[
γ(t) − a1(t) lnx(t) − a2(t) ln x(t− τ(t))

−b1(t)
∫ t

−∞
e

∫ t
s α(ζ)dζ(β(s) ln x(s) + ϱ(s) ln x(s− δ(s)))ds

−b2(t)
∫ t−σ(t)

−∞
e

∫ t−σ(t)
s α(ζ)dζ(β(s) ln x(s) + ϱ(s) ln x(s− δ(s)))ds

]
. (9)

Now we are in a position to state our main results on the existence and uniqueness of
almost periodic solution for system (3).

Theorem 2.1. In addition to (H1) and (H2), if the following condition

(H3)
∫ t

−∞ e−
∫ t

s a1(ζ)dζΘ < 1, where

Θ =

[
a2(s) + (b1(s) + b2(s))

∫ s

−∞
e

∫ s
ξ α(ζ)dζ(β(ξ) + ϱ(ξ))dξ

]
,

then system (3) has a unique positive almost periodic solution.
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Proof: Let x(t) = ey(t), and then (9) takes the form

ẏ(t) = −a1(t)y(t) − a2(t)y(t− τ(t)) + γ(t)

−b1(t)
∫ t

−∞
e

∫ t
s α(ζ)dζ(β(s)y(s) + ϱ(s)y(s− δ(s)))ds

−b2(t)
∫ t−σ(t)

−∞
e

∫ t−σ(t)
s α(ζ)dζ(β(s)y(s) + ϱ(s)y(s− δ(s)))ds. (10)

Clearly, if system (10) has an almost periodic solution y∗(t), then x∗(t) = ey
∗(t) is an almost

periodic solution of (9). In view of Lemma 2.1, we can conclude that
(
ey

∗(t), u∗(t)
)T

is an
almost periodic solution of (4), where

u∗(t) =

∫ t

−∞
e

∫ t
s αi(ζ)dζ [β(s)x(s) + ϱ(s)x∗(s− δ(s))]ds.

Now we will show that (10) has a unique almost periodic solution. Firstly, we define
B = {ψ(t)|ψ(t) is a continuous almost periodic function}. Obviously, B is a Banach space
with the norm ||ψ|| = max supt∈R |y(t)|.

For any ψ(t) ∈ B, we consider the following almost periodic system

ẏ(t) = −a1(t)y(t) − a2(t)ψ(t− τ(t)) + γ(t)

−b1(t)
∫ t

−∞
e

∫ t
s α(ζ)dζ(β(s)ψ(s) + ϱ(s)ψ(s− δ(s)))ds

−b2(t)
∫ t−σ(t)

−∞
e

∫ t−σ(t)
s α(ζ)dζ(β(s)ψ(s) + ϱ(s)ψ(s− δ(s)))ds. (11)

By (H1), we know that m(a1) > 0. In view of Lemma 2.2, the linear system

ẏ(t) = −a1(t)y(t) (12)

admits an exponential dichotomy on T. Then system (12) has exactly one almost periodic
solution as follows

yψ(t) =

∫ t

−∞
e−

∫ t
s a1(ζ)dζhψ(s)ds, (13)

where

hψ(s) = −a2(t)ψ(t− τ(t)) + γ(t)

−b1(t)
∫ t

−∞
e

∫ t
s α(ζ)dζ(β(s)ψ(s) + ϱ(s)ψ(s− δ(s)))ds

−b2(t)
∫ t−σ(t)

−∞
e

∫ t−σ(t)
s α(ζ)dζ(β(s)ψ(s) + ϱ(s)ψ(s− δ(s)))ds. (14)

Define a mapping F : B → B as follows

Fψ(t) = Zψ(t), for any ψ ∈ B. (15)

For any ϕ, ψ ∈ B, we have

|(F (ϕ) − F (ψ))| ≤
∫ t

−∞
e−

∫ t
s a1(ζ)dζ |hϕ(s) − hψ(s)|ds. (16)
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On the other hand, by (14), we get

|hϕ(s) − hψ(s)|
= a2(s)|ϕ(s− τ(s)) − ψ(s− τ(s))|

+b1(s)

∫ s

−∞
e

∫ s
ξ α(ζ)dζ(β(ξ)|ϕ(ξ) − ψ(ξ)| + ϱ(ξ)|ϕ(ξ − δ(ξ)) − ψ(ξ − δ(ξ))|)dξ

+b2(s)

∫ s−σ(s)

−∞
e

∫ s−σ(s)
ξ α(ζ)dζ(β(ξ)|ϕ(ξ) − ψ(ξ)| + ϱ(ξ)|ϕ(ξ − δ(ξ)) − ψ(ξ − δ(ξ))|)dξ

≤ a2(s) sup
t∈R

|ϕ(t) − ψ(t)| + b1(s)

∫ s

−∞
e

∫ s
ξ α(ζ)dζ(β(ξ) sup

t∈R
|ϕ(t) − ψ(t)|

+ϱ(ξ) sup
t∈R

|ϕ(t) − ψ(t)|)dξ + b2(s)

∫ s−σ(s)

−∞
e

∫ s−σ(s)
ξ α(ζ)dζ(β(ξ) sup

t∈R
|ϕ(t) − ψ(t)|

+ϱ(ξ) sup
t∈R

|ϕ(t) − ψ(t)|)dξ

≤

[
a2(s) + (b1(s) + b2(s))

∫ s

−∞
e

∫ s
ξ α(ζ)dζ(β(ξ) + ϱ(ξ))dξ

]
× sup

t∈R
|ϕ(t) − ψ(t)| = Θ sup

t∈R
|ϕ(t) − ψ(t)|, (17)

where

Θ =

[
a2(s) + (b1(s) + b2(s))

∫ s

−∞
e

∫ s
ξ α(ζ)dζ(β(ξ) + ϱ(ξ))dξ

]
.

It follows from (16) and (17) that

|(F (ϕ) − F (ψ))| ≤
∫ t

−∞
e−

∫ t
s a1(ζ)dζΘ sup

t∈R
|ϕ(t) − ψ(t)|ds. (18)

Then we get supt∈R |(F (ϕ(t)) − F (ψ(t)))| ≤ Λ supt∈R |(ϕ(t) − ψ(t))|. For any positive
integer m, we have

sup
t∈R

|(Fm(ϕ(t)) − Fm(ψ(t)))|

= sup
t∈R

|(F (Fm−1(ϕ(t))) − F (Fm−1(ψ(t))))|

≤ Λ sup
t∈R

|(Fm−1(ϕ(t)) − Fm−1(ψ(t)))| ≤ · · · ≤ Λm sup
t∈R

|(ϕ(t) − ψ(t))|. (19)

By (H3), we get limm→+∞ Λm = 0, which implies that there exists a positive inte-
ger N∗ and a positive constant µ0 < 1 such that ΛN∗

= κ ≤ µ0. It follows that∣∣(FN∗
(ϕ) − FN∗

(ψ)
)∣∣ ≤ κ supt∈R |ϕ(t) − ψ(t)| ≤ µ0||ϕ− ψ||, which implies that the map-

ping FN∗
: B → B is a contraction mapping. In view of Lemma 2.3, F has a unique

fixed point y∗(t) in B. Thus system (10) has a unique almost periodic solution y∗(t), and
then x∗(t) = ey

∗(t) is the unique almost periodic solution of (9). Thus, by Lemma 2.4,(
ey

∗(t), u∗(t)
)T

is the unique almost periodic solution of (3). The proof of Theorem 2.1 is
completed.

3. An Example. In this section, to illustrate the feasibility of our theoretical findings
obtained in previous sections, we give an example. Consider the following single species
logarithmic population model{

ẋ(t) = x(t)[γ(t) − a1(t) ln x(t) − a2(t) lnx(t− τ(t)) − b1(t)u(t) − b2(t)u(t− σ(t))],

u̇(t) = −α(t)u(t) + β(t) ln x(t) + ϱ(t) ln x(t− δ(t)),

(20)
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where γ(t) = 0.2, a1(t) = 0.2 sin t, a2(t) = 0.4 cos t, τ(t) = 0.3, σ(t) = 0.1, α(t) = 0.4,
β(t) = 0.5 sin t, ϱ(t) = 0.2 cos t, and δ(t) = 0.02. Then all the conditions (H1)–(H3) hold.
Thus system (20) has exactly one unique almost periodic solution. The fact is shown by
the computer simulations in Figure 1.
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Figure 1. Transient response of state variables x(t) and u(t)

4. Conclusions. In this paper, we study a single species logarithmic population model.
By applying the contraction mapping principle, we establish some sufficient conditions for
the existence and uniqueness of almost periodic solution of the single species logarithmic
population model. The obtained sufficient conditions are given in terms of the algebraic
inequalities which are easily checked. The obtained results in this paper are completely
new and generalize those of the previous studies in [4]. Recently, the global exponential
stability of the single species logarithmic population model has received much attention,
and we leave this interesting problem for our future work.
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