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Abstract. This paper is concerned with the parameter estimation of nonlinear dynamic
Hammerstein systems in state space form. More specifically, a hierarchical based recur-
sive least squares algorithm is employed to estimate the parameters of the proposed Ham-
merstein systems and a Kalman filter is derived to estimate the states of the canonical
state space subsystem. Simulation examples demonstrate the effectiveness of the proposed
method.
Keywords: Hammerstein system, Parameter estimation, Hierarchical based recursive
least squares algorithm, Kalman filter

1. Introduction. System modeling and parameter estimation have received much at-
tention in recent years [1]. All physical systems are nonlinear and can be modelled by
block-oriented nonlinear models. System identification has been widely used in many ar-
eas [2]. This paper focuses on the identification of Hammerstein model which consists of a
nonlinear static block followed by a linear dynamic subsystem. The linear dynamic block
has been assumed to be ARMAX [3], state space model [4], and so on.

Many approaches have been proposed to estimate parameters of Hammerstein systems.
The iterative method was first proposed to estimate Hammerstein system in Narendra
and Gallman [5], which is a very simple and efficient algorithm. Over-parameterization
method is one direct method for the identification of Hammerstein models, in which the
output of Hammerstein system is linear on the parameter space. However, the resulting
parameter vector contains cross-products between the parameters of the non-linear part
and the linear part, which increases the dimension of the parameter vector and leads to
many redundant parameter estimates [6]. Vörös used the key term separation technique
to deal with identification problems of Hammerstein systems with discontinuous nonlin-
earities [7]. For the key term separation technique, the output of system can be expressed
as the linear regressive of all parameters which can be directly estimated. The blind
identification method is presented by Bai to identify the Hammerstein models. By using
the blind approach, Bai discussed the the Hammerstein and Hammerstein-Wiener model
identification problems [8]. Hierarchical identification is inspired by the decomposition-
coordination principle based hierarchical control for large-scale systems, which uses sub-
system decomposition in identification [9].

In the area of state space system identification, Wills et al. addressed the problem of
estimating parameters in state space model from observed frequency domain data [10].
Mercère and Bako presented a new subspace-based identification method to estimate the
multi-inputs multi-outputs (MIMO) canonical state space model directly from data, which
does not require the so-called observability/controllability indices [11]. Ding discussed a
recursive least squares algorithm for a canonical state space dynamic system, in which the
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states of the linear system are estimated through the Kalman filter using the estimated
parameters [12].

This paper presents a canonical state space based Hammerstein system. Differing from
the work in [9], we estimate states of the linear subsystem through the Kalman filter [12].
In addition, a hierarchical based recursive least squares algorithm is adopted to generate
the parameter estimates. By using the hierarchical identification principle, dimensions
of the covariance matrices become smaller and the computation is more efficient, when
compared with the over-parameterizations method. We frame our study in the identifica-
tion of state space systems. The basic idea is to use the iterative technique to deal with
the identification problem and to present a hierarchical gradient based iterative algorithm
and a hierarchical least squares based iterative algorithm for a state space model. The
calculated amount can be decreased compared with the over-parameter method which
includes a high dimension parameter vector. In addition, the Kalman filter is successfully
applied to states estimation of the nonlinear Hammerstein system.

2. Problem Statement and Preliminaries. Consider a Hammerstein system depicted
in Figure 1, which consists of a static nonlinear block followed by a linear state space block.
For the system, u(t) ∈ R and y(t) ∈ R are the system input and output variables of the
Hammerstein system at time instant t; ū(t) ∈ R is the internal variable; v(t) ∈ R is a white

noise with zero mean; f(·) is the polynomial function; x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈
Rn is the state vector of the state space subsystem. A ∈ Rn×n, b ∈ Rn, c ∈ R1×n and
h ∈ Rm are the system parameter matrices/vectors. Assume that (c,A) is observable
and u(t) = 0, y(t) = 0 for t 6 0. A, b and h are the unknown parameters to be estimated
from the input-output sequence {u(t), y(t)}. The mathematical description of the above
Hammerstein state space system can be written as:

ū(t) = f(u(t)) =
m∑

i=1

hifi[u(t)] = fT (t)h, (1)

x(t + 1) = Ax(t) + bū(t), (2)

y(t) = cx(t) + v(t), (3)

where

A :=


−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0

 ∈ Rn×n, f(t) :=


f1[u(t)]
f2[u(t)]

...
fm[u(t)]

 ∈ Rn, (4)

h :=


h1

h2
...

hm

 ∈ Rm, b :=


b1

b2
...
bn

 ∈ Rn, c := [1, 0, · · · , 0] ∈ R1×n. (5)
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Figure 1. The Hammerstein state space system
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From (2) and (3), we have
x1(t + 1)
x2(t + 1)

...
xn−1(t + 1)
xn(t + 1)

 =


−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0




x1(t)
x2(t)

...
xn−1(t)
xn(t)

 +


b1

b2
...

bn−1

bn

 ū(t), (6)

y(t) = [1, 0, 0, · · · , 0]x(t) + v(t), (7)

which can be written as

xi(t + 1) = −aix1(t) + xi+1(t) + biū(t), (8)

xn(t + 1) = −anx1(t) + bnū(t), (9)

y(t) = x1(t) + v(t). (10)

Multiplying (8) by z−i and (9) by z−n gives

xi(t − i + 1) = −aix1(t − i) + xi+1(t − i) + biū(t − i), (11)

xn(t − n + 1) = −anx1(t − n) + bnū(t − n). (12)

Then summing for i from i = 1 to i = n − 1 for (10) gives

x1(t) = −
n−1∑
i=1

aix1(t − i) + xn(t − n + 1) +
n−1∑
i=1

biū(t − i). (13)

Substituting (12) into (13) gives

x1(t) = −
n−1∑
i=1

aix1(t − i) − anx1(t − n) + bnū(t − n) +
n−1∑
i=1

biū(t − i)

= −
n∑

i=1

aix1(t − i) +
n∑

i=1

biū(t − i). (14)

From (10) and (14), we can get

y(t) = −
n∑

i=1

aix1(t − i) +
n∑

i=1

biū(t − i) + v(t). (15)

According to [8], assume ∥ b ∥= 1 and the first nonzero entry of b is positive, i.e., b1 > 0.
Based on (1) and (15), the proposed Hammerstein nonlinear subsystem can be written as

y(t) = −
n∑

i=1

aix1(t − i) +
n∑

j=1

bj

m∑
k=1

hkfk[u(t − j)] + v(t) = φT (t)a + bT F (t)h + v(t), (16)

where

φ(t) = [−x1(t − 1),−x1(t − 2), · · · ,−x1(t − n)]T ∈ Rn, (17)

F (t) :=


f1[u(t − 1)] f2[u(t − 1)] · · · fm[u(t − 1)]
f1[u(t − 2)] f2[u(t − 2)] · · · fm[u(t − 2)]

...
...

...
...

f1[u(t − n)] f2[u(t − n)] · · · fm[u(t − n)]

 ∈ Rn×m, (18)

a := [a1, a2, · · · , an]T ∈ Rn. (19)

This is the identification model of the Hammerstein state space model. In the next section,
we would present a hierarchical based recursive least square identification algorithm and
a Kalman filter to estimate the parameters and states of the system, which performs
excellently.
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3. The Hierarchical Based Recursive Least Square Identification Algorithm.
The least squares method is a basic idea for system identification and parameter estima-
tion. According to the input sequence {u(t)} and output sequence {y(t)} of a system

which has white noise sequence {v(t)} and parameter vector θ̂(t), the recursive least
squares algorithm can be written as:

θ̂(t) = θ̂(t − 1) + L(t)
[
y(t) − φT (t)θ̂(t − 1)

]
, (20)

L(t) = P (t − 1)φ(t)
[
1 + φT (t)P (t − 1)φ(t)

]−1
, (21)

P (t) =
[
I − L(t)φT (t)

]
P (t − 1), P (0) = p0In. (22)

According to the least squares principle, the quadratic criterion function of the proposed
Hammerstein system can be defined as

J(a, b, h) :=
t∑

i=1

[
y(i) − φT (i)a + bT F (i)h

]2
. (23)

Since the information vector φT (t) contains the unknown state variables xn(t − i), here
we replace the unknown state variables xn(t− i) in φT (t) with its estimates x̂n(t− i), and

replace A, b, x(t), ū(t) with their estimates Â, b̂, x̂(t), ˆ̄u(t). For the bilinear parameter
vectors in J(a, b, h), we adopt the hierarchical based recursive least square identification

method with decomposing the cost function into three linear
(
J

(
a, b̂(t − 1), ĥ(t − 1)

)
,

J
(
â(t), b, ĥ(t − 1)

)
, J

(
â(t), b̂(t), h

))
cost functions. The details can be described as

[9]:

â(t) = â(t − 1) + L1(t)
[
y(t) − φ̂T (t)â(t − 1) − b̂

T
(t − 1)F (t)ĥ(t − 1)

]
, (24)

L1(t) = P 1(t − 1)φ̂(t)
[
1 + φ̂T (t)P 1(t − 1)φ̂(t)

]−1
, (25)

P 1(t) =
[
I − L1(t)φ̂

T (t)
]
P 1(t − 1), P 1(0) = p0In, (26)

b̂(t) = b̂(t − 1) + L2(t)
[
y(t) − φ̂T (t)â(t) − b̂

T
(t − 1)F (t)ĥ(t − 1)

]
, (27)

L2(t) = P 2(t − 1)F (t)ĥ(t − 1)

[
1 +

[
F (t)ĥ(t − 1)

]T

P 2(t − 1)F (t)ĥ(t − 1)

]−1

, (28)

P 2(t) =

[
I − L2(t)

[
F (t)ĥ(t − 1)

]T
]

P 2(t − 1), P 2(0) = p0In, (29)

ĥ(t) = ĥ(t − 1) + L3(t)
[
y(t) − φ̂T (t)â(t) − b̂

T
(t)F (t)ĥ(t − 1)

]
, (30)

L3(t) = P 3(t − 1)
[
b̂

T
(t)F (t)

]T
[
1 + b̂

T
(t)F (t)P 3(t − 1)

[
b̂

T
(t)F (t)

]T
]−1

, (31)

P 3(t) =
[
I − L3(t)b̂

T
(t)F (t)

]
P 3(t − 1), P 3(0) = p0In. (32)

Here we estimate x̂(t + 1) by using the following Kalman filter which was introduced by
Ding in [12], and the final form is shown as follows

x̂(t + 1) = Â(t)x̂(t) + b̂(t)ˆ̄u(t) + L0(t)[y(t) − cx̂(t)], x̂(1) = 1n/p0, (33)

L0(t) = Â(t)P 0(t)c
T

[
1 + cP 0(t)c

T
]−1

, (34)

P 0(t + 1) = Â(t)P 0(t)Â
T
(t) − L0(t)cP 0(t)Â

T
(t), P 0(t) = In, (35)
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where

Â(t) :=


−â1(t) 1 0 · · · 0
−â2(t) 0 1 · · · 0

...
...

...
. . .

...
−ân−1(t) 0 0 · · · 1
−ân(t) 0 0 · · · 0

 , b̂(t) :=


b̂1(t)

b̂2(t)
...

b̂n−1(t)

b̂n(t)

 , ˆ̄u(t) = fT (t)ĥ(t). (36)

The pseudo-code of computing the parameter estimation vectors â(t), b̂(t), ĥ(t) and the
state estimation vector x̂(t) is shown below in Algorithm 1.

Algorithm 1 The pseudo-code of computing the parameter estimation vectors â(t), b̂(t),

ĥ(t) and the state estimation vector x̂(t).

Initialize:
a0 = 1n/p0, b0 = 1n/p0, h0 = 1m/p0; P 1(0) = I/p0, P 2(0) = I/p0, P 3(0) = I/p0;
p0 = 106; x(i) = 0, u(i) = 0, y(i) = 0 for i <= 0; x(1) is a random vector.

Iterate:
1: for t=1:t do
2: Collect the input sequence {u(t)} and output sequence {y(t)}, and form φ(t), F (t)

according to (17), (18);

3: Based on the updated parameter vector â(t−1), b̂(t−1), and ĥ(t−1), compute the
gain vector L1(t) and the covariance matrix P 1(t) using (25) and (26), and update
the parameter estimation vector â(t) using (24);

4: Based on the updated parameter vector â(t), b̂(t − 1), and ĥ(t − 1), compute the
gain vector L2(t) and the covariance matrix P 2(t) using (28) and (29), and update

the parameter estimation vector b̂(t) using (27);

5: Based on the updated parameter vector â(t), b̂(t), and ĥ(t− 1), compute the gain
vector L3(t) and the covariance matrix P 3(t) using (31) and (32), and update the

parameter estimation vector ĥ(t) using (30);

6: Form Â(t) and b̂(t) using (36);
7: Compute L0(t) and P 0(t) and update the parameter estimation vector x̂(t + 1)

using (33)-(35);
8: end for

4. Example. To further illustrate the performance of the proposed method, we consider
a system as follows

x(t + 1) =

[
0.340 1
−0.429 0

]
x(t) +

[
0.409
1.352

]
u(t), (37)

y(t) = [1, 0]x(t) + v(t), u(t) = 1.288u(t) + 0.760u2(t) + 0.100u3(t). (38)

Then the parameters vector can be defined as

θ = [a1, a2, b1, b2, h1, h2, h3]
T = [0.340,−0.429, 0.409, 1.352, 1.288, 0.760, 0.100]T . (39)

The hierarchical based recursive parameter estimation error is defined by

δ(t) :=

√
∥ â(t) − a ∥2 + ∥ b̂(t) − b ∥2 + ∥ ĥ(t) − h ∥2

∥ a ∥2 + ∥ b ∥2 + ∥ h ∥2
. (40)

To test the effectiveness of Algorithm 1, the input sequence is taken as an independent
persistent excitation signal sequence with zero mean and unit variance, and the variance
of the white noise sequence is set as σ2 = 0.12 and σ2 = 0.52, respectively. Then the
parameter and state estimate errors are shown in Table 1, the parameter estimates of θ̂(t)
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versus t are shown in Figure 2 and Figure 3. For the parameters and states to be estimated,
the convergence precision is high and the convergence speed is fast. The parameter

Table 1. The parameter estimates of θ̂(t) versus t

σ2 t a1 a2 b1 b2 h1 h2 h3 δ(%)
0.12 500 0.31859 −0.35245 0.37393 1.38374 1.31552 0.72440 0.07515 4.96564

1000 0.33296 −0.39074 0.39290 1.38132 1.29211 0.73115 0.08769 2.82863
3000 0.33896 −0.41880 0.40642 1.38071 1.27356 0.73901 0.09668 1.87472

0.52 500 0.24813 −0.28556 0.35948 1.39329 1.34301 0.73802 0.07601 9.05393
1000 0.28592 −0.34430 0.38112 1.37940 1.31537 0.74492 0.08245 5.33202
3000 0.32315 −0.40365 0.39047 1.37757 1.28865 0.74732 0.09720 2.14670

True values 0.340 −0.429 0.409 1.352 1.288 0.760 0.100 0
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Figure 2. The parameter estimates of θ̂(t) versus t (σ2 = 0.12)
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Figure 3. The parameter estimates of θ̂(t) versus t (σ2 = 0.52)
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Figure 4. The parameter estimation errors δ versus t

estimation errors δ versus t are shown in Figure 4. From Figure 4, the estimation errors δ
become smaller with the increasing of t. By using the hierarchical recursive least squares
algorithm, the parameters and states of the Hammerstein system with canonical state
space linear subsystem are estimated. Because the dimensions of the covariance matrices
become smaller and the computation is more efficient when the hierarchical principle
is used. The calculated amount can be decreased compared with the over-parameter
method which includes a high dimension parameter vector. Therefore, we can conclude
the proposed method is effective for nonlinear Hammerstein state space systems.

5. Conclusion. This paper proposes a Kalman filter based hierarchical recursive least
squares algorithm to estimate the parameters and states of a Hammerstein system with
canonical state space linear subsystem. By using the hierarchical identification principle,
the calculated amount can be decreased compared with the over-parameter method. In
addition, the Kalman filter is successfully applied to states estimation of the nonlinear
Hammerstein system. The simulation results indicate that the proposed algorithm is
effective. In further research, hierarchical recursive least squares algorithm can be used
in the off line identification field, such as the waste water treatment process and other
industry circle.
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