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Abstract. This paper aims to average the number of level hitting in a time-discrete
model based on geometric Brownian motion. A closed-form solution is obtained by sto-
chastic calculation. By the computational results of both expected upward and downward
barrier crossing times, trading strategies can be formed with an optimal take-profit level.
Real market trading test is conducted accordingly and the approaches developed in this
paper are testified to be profitable.
Keywords: Brownian motion, Running maximum, Level hitting, Optimization

1. Introduction. This research studies the probability of asset price hitting certain pre-
determined level by estimating the number of upward (downward) crossing in a period of
time. The result can be significant for pricing the options based on multiple time intervals.
Typical example is barrier option, of which topic there has been extensive literature
dealing with pricing and hedging. Regarding the hitting behaviors, one approach is to
study the law of the maximum (or minimum) by T. Guillaume [1, 2], which gives formulae
for standard step-up and step-down barrier options, as well as partial and outside step-up
and step-down barrier options. Another recent research about hitting time of a drifted
Brownian motion by A. Dassios and Y. Y. Zhang [3] applies double Laplace transform,
and E. Renault et al. [4] investigate the transaction prices based on a hitting-time model.

Motivation of this research comes from some trading strategies adopted by traders. In
practice, the actual meaning of this level considered for hitting is a kind of suppressive
line, and the trader buys in when the price is under this suppressive level (denoted as
L) at the beginning of each trading day in an up-trend movement and sets this L as a
take-profit level. Applying this strategy, the trader expects the deal closed by hitting the
take-profit level within the same day, so it is tempted to compute the expected frequency
of such an event. Suppose the frequency is high, it is deemed as a worthy deal; otherwise,
it is better not to take a long position in this situation. For stochastic analysis and
computation in this paper, we refer to [6, 7].
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This research pioneers a method to measure the hitting frequency of the Brownian
motion, which is useful but has not yet been concluded by existing research, mostly
because of the inconveniences caused by the infinite hitting of Brownian motion locally,
cf. Lemma 3.1. Our paper is proceeded as follows. We formulate the problem in Section
2 and consider the most direct measure of level crossing problem in Section 3, where we
also analyze the limit of our defined measure Un, whose expression for fixed n is given by
Section 4. We apply these results for trading strategy design and optimize the take-profit
level in Section 5. We conclude the paper in Section 6.

2. Modeling and Formulation. The asset price (Yt)t∈IR+ is modeled by a geometric
Brownian motion

dYt = µYtdt + σYtdBt, Y0 > 0, t ∈ [0, T ], (1)

where (Bt)t∈IR+ is a standard Brownian motion, µ ∈ IR is a constant drift factor and
σ ∈ (0,∞) is a constant volatility. Consider the observation points Tn := {T0, T1, . . . , Tn},
where T0 = 0, Tn = T and Tk+1−Tk = δn := T/n for k = 0, . . . , n−1. In practice, we can
view δn as one trading day and consider the consecutive n days, and it is not necessary
to pass n to infinity for some asymptotic results. Letting L ∈ IR+ be the upper barrier
in our setting, we aim to compute the average number of subintervals where the upper
crossing happens, and specifically, it is defined as

Un := IE

[
n∑

i=1

1{Y(i−1)δn<L & Ŷ(i−1)δn,iδn≥L}

]
, (2)

where Ŷs,t := sup
s≤r≤t

Yr for 0 ≤ s ≤ t ≤ T . Equivalently, we have

Un =
n∑

i=1

P
(
Y(i−1)δn < L & Ŷ(i−1)δn,iδn ≥ L

)
, n ∈ N+, (3)

and Un will be computed by the following Proposition 4.1.

3. Limit Analysis of Un. Given the process (Yt)t∈IR+ and the level L ∈ IR+, it is
tempted to expect the crossing frequency during the whole time horizon [0, T ]; however,
the following lemma illuminates that the result is trivial.

Lemma 3.1. Given a standard Brownian motion (Bt)t∈IR+, for any function f on IR and
L ∈ IR, T > 0, the set

{t ∈ [0, T ]; f(Bt) = L}
is almost surely either empty or has infinitely many points.

This lemma is an obvious corollary of a well known property about zeros of Brownian
motion that, the set of zeros of Brownian motion is a.s. closed, without any isolated
points, and has zero Lebsgue measure, see, e.g., Proposition (3.12) of [8], and the proof
applies the Blumenthal’s 0-1 law, see, e.g., [5]. Therefore, the expectation of total times of
level crossing through the level L is infinity although the averaged times of level crossing
by the observed price curves are supposed to be finite within a limited time span. This is
a defect of the Brownian diffusion modelling, especially when we consider the frequency
of level crossing. Although we expect the limit of Un when n goes to infinity to be a
meaningful measure of level crossing behaviors over the whole time horizon [0, T ], the
following proposition denies this conception.

Proposition 3.1. For {Un}n≥1 defined by (2), we have lim
n→∞

Un = ∞.
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Proof: First we define Vn := IE

[
n∑

i=1

1{∃t∈((i−1)δn,iδn], Yt=L}

]
, it follows that Un > Vn.

Given Yt0 = L and t0 ∈ [0, T ], by Lemma 3.1 we see that there almost surely exists
a decreasing sequence {xk}k∈N+ approaching to t0 from the righthand side, such that
Yxk

= L, xk+1 < xk for any k ∈ N+ and lim
k→∞

xk = t0. Since ∪k∈N+T2k is dense in [0, T ],

there also exists a decreasing sequence {yk}k∈N+ ∈ ∪k∈N+T2k approaching to t0 from the
righthand side; furthermore, a subsequence {yki

}ki∈{k} can be picked from {yk}, s.t., there
a.s. exists an xj inside (yki+1

, yki
) for each i > N and some N > 0. By the continuity of

(Yt)t∈[0,T ], we have
∞∑
i=1

1{∃t∈((i−1)δn,iδn], Yt=L} = ∞, a.s., given Ut0 = L for some t0 ∈ [0, T ].

By Fatou’s Lemma, we have lim inf
n→∞

Vn ≥ ∞.

4. Computation of Level Crossings.

Proposition 4.1. For any i ∈ {2, 3, . . . , n}, we have

P
(
Y(i−1)δn < L & Ŷ(i−1)δn,iδn ≥ L

)
=

∫ L

0

1

σy
√

2π(i − 1)δn

e
−
(log(

y
Y0

)−(µ− 1
2 σ2)(i−1)δn)

2

2σ2(i−1)δn

(
1 − Φ (d1(y)) +

(
L

y

) 2µ

σ2 −1

Φ (d2(y))

)
dy,

and P
(
Y0 < L & Ŷ0,δn ≥ L

)
= 1{Y0<L}

[
1 − Φ(d1(Y0)) +

(
L
Y0

) 2µ

σ2 −1

Φ(d2(Y0))

]
for the case

i = 1, where for any y > 0, d1(y), d2(y) are defined by

d1(y) :=
log
(

L
y

)
−
(
µ − 1

2
σ2
)
δn

σ
√

δn

, d2(y) :=
− log

(
L
y

)
−
(
µ − 1

2
σ2
)
δn

σ
√

δn

. (4)

Proof: Note that the solution to SDE (1) is Yt = Y0 exp
((

µ − 1
2
σ
)
t + σBt

)
, for t ∈

[0, T ]. By the Markov property of (Yt)t∈[0,T ] we have

P
(
Y(i−1)δn < L & Ŷ(i−1)δn,iδn ≥ L

)
= IE

[
1{Y(i−1)δn<L} IE

[
1{Ŷ0,δn≥L} | Y0 = y

] ∣∣∣
y=Y(i−1)δn

]
.

(5)

Applying Girsanov theorem, we have the following expression, for any L ∈ IR+,

P
(
Ŷ0,δn ≤ L

)
= Φ(d1(Y0)) −

(
L

Y0

) 2µ

σ2 −1

Φ(d2(Y0)). (6)

Plugging (6) into (5), we obtain that for any i ∈ {2, · · · , n},

P
(
Y(i−1)δn < L & Ŷ(i−1)δn,iδn ≥ L

)
=

∫ L

0

(
1 − Φ(d1(y)) +

(
L

y

) 2µ

σ2 −1

Φ(d2(y))

)
fY (y, (i − 1)δn)dy,

(7)

where fY (y, t) := 1
σy

√
2πt

exp

(
−
(
log y

Y0
−(µ− 1

2
σ2)t

)2

2σ2t

)
, is the probability density of Yt. In

particular, we consider the case when i = 1. If Y0 > L, we have P
(
Y0 < L & Ŷ0,δn ≥ L

)
=

0; on the other hand, by a similar approach as (7), we have

P
(
Y0 < L & Ŷ0,δn ≥ L

)
= 1 − Φ (d1(Y0)) +

(
L

Y0

) 2µ

σ2 −1

Φ (d2(Y0)) . (8)
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Hence we complete the proof by combining (7) and (8).
Similarly, we consider the problem of downwards crossing through the lower barrier by

defining

Dn := IE

[
n∑

i=1

1{Y(i−1)δn>L & Y̌(i−1)δn,iδn≤L}

]

=
n∑

i=1

P
(
Y(i−1)δn > L & Y̌(i−1)δn,iδn ≤ L

)
, n ∈ N+,

(9)

where Y̌s,t := inf
s≤r≤t

Yr for 0 ≤ s ≤ t ≤ T and Dn are calculated by Proposition 4.2.

Proposition 4.2. For any i ∈ {2, 3, . . . , n}, we have

P
(
Y(i−1)δn > L & Y̌(i−1)δn,iδn ≤ L

)
=

∫ L

0

(
1 − Φ (−d1(y)) +

(
L

y

) 2µ

σ2 −1

Φ (−d2(y))

)
fY (y, (i − 1)δn) dy.

To conclude this section, we testify our expressions of expected number of barrier
crossings by numerical implements and compare it with Monte Carlo simulation. Set
Y0 = 100, L = 101, T = 10, δn = 1 and vary both the drift µ and the volatility σ, the
computational result of Un according to (3) and Proposition 4.1 is plotted in the following
Figure 1(a), which consumes 12659 seconds while Monte Carlo simulation consumes 34227
seconds to achieve the data in the same level of accuracy. Restriction on running time
budget within 20000 seconds will result in the following Figure 1(b) by Monte Carlo
method, which appears much rougher than the left one.

(a) (b)

Figure 1. Expected times of barrier crossings through different parame-
ters (µ, σ)

5. Application to Take-Profit Level Setting. In this section, we apply the results
in Section 2 and Section 4 to designing a strategy for trading on derivatives. Simulating
the price process with (Yt)t∈[0,T ] in (1), we investigate an optimization problem of setting
take-profit level. Let Y0 denote the current price and L be the take-profit level L > 0, we
try to find the optimal L according to a utility function based on the expected number of
upper barrier crossing Un for given n ∈ N+ and T > 0. Defined by (2), Un is a function of

L, so we define Un(L) := IE

[
n∑

i=1

1{Y(i−1)δn<L & Ŷ(i−1)δn,iδn≥L}

]
for L ≥ 0, and based on the
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results of Propositions 4.1 and 4.2, we have the utility function Λ(L) of L > 0 for fixed
n ∈ {2, 3, . . .}, Λ(L) := max (log(L − Y0)Un(L), log(Y0 − L)Dn(L)), and proceed to find

the optimal take-profit level, denoted as L̂, which satisfies

Λ
(
L̂
)

= max
L>0

Λ(L). (10)

Define Λ1(L) := log(L − Y0)Un(L) and Λ2(L) := log(Y0 − L)Dn(L), we have max
L>0

Λ(L) =

max

(
max
L>0

Λ1(L), max
L>0

Λ2(L)

)
, where max

L>0
Λ1(L) and max

L>0
Λ2(L) are numerically com-

putable with (3), Proposition 4.1 and Proposition (9), 4.2 respectively. We implement it
with a parameters set {µ = 0.01, σ = 0.01, Y0 = 100, δn = 1} as follows.

i) Determine L̂1 by computing Λ1(L), the mapping L → Λ1(L) is reflected in a belly

curve, and the maximum value Λ1(L) is achieved when L̂1 = 106.1 and Λ1

(
L̂
)

=

1.6384.
ii) Determine L̂2 by computing Λ2(L). Similarly we obtain that L̂2 = 99.9 and Λ2

(
L̂
)

=

1.07982.
iii) Compare Λ1

(
L̂1

)
and Λ2

(
L̂2

)
to determine Λ

(
L̂
)

and L̂. In this case, Λ2

(
L̂
)

>

Λ1

(
L̂
)
, and hence we conclude that the global optimal level L̂ = L̂1 = 106.1. In-

tuitively, we only consider the upward crossings since µ is positive, and L̂2 = 99.9
means that it is suggested to close the position as soon as possible as we opened it
in a direction against the trend we detected.

To show the real profitability in the trading practice, we conduct a testing in the FX
market. We choose two pairs, one is EURUSD, the other is USDJPY for they are the
most significant currency pairs. This experiment lasted 180 market days from 28-th Aug
2014 to 25-th Mar 2015, the exact day we started to write this section. On each day, we
update the parameter µ and σ based on the closing prices of the previous 10 days, and
let T = 10, δn = 1, then solve the maximization problem (10) to achieve the optimal

take-profit level L̂ and the corresponding value of Λ
(
L̂
)
. Once the computational result

(a) (b)

Figure 2. Trading on EURUSD and USDJPY
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shows Λ
(
L̂
)
≥ 1.1 and position is flat, we open a position, specifically, long position is

taken when Λ1

(
L̂1

)
> Λ2

(
L̂2

)
, and we short for the case Λ1

(
L̂1

)
< Λ2

(
L̂2

)
. All trades

are recorded in Figure 2 below, where thick lines denote the state in a long position, blue
dash lines stand for a short position, and thin lines indicate that there are no unclosed
trades. Besides, starting points of each trade are marked with a red circle, while the
terminal points are marked with a star. Through the trading practice shown in Figure
2(a) for EURUSD, the total profit is 2398 pips, obtained by summing up all deals. For the
another pair - USDJPY, performed with more sways, based on the trading practice shown
in Figure 2(b), the total profit is 1752.6 pips and taking one long position through all
the 180 market days will win 1592.7 pips. Our trading strategy outperforms the absolute
increase of the index by 10 percent.

6. Conclusions and Further Research. By this paper, we showed that the expected
number of level hitting of geometric Brownian motion is computable by discretizing the
time horizon, although Browian motion has infinite hitting locally. Our method is able
to be extended to other diffusion processes, and its application to barrier option is also
available.
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