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Abstract. Population topologies are crucial for the performance of particle swarm op-
timization (PSO) algorithms. In the traditional fully informed particle swarm (FIPS)
algorithm, topologies are completely regular, which may cause the population to lose di-
versity and to get trapped into local optima. This paper proposes an adaptive small-world
topology for the FIPS algorithm. In the proposed small-world topology, some particles
communicate with neighborhood nearby while others by chance communicate with some
distant particles, so as to promote the balance between global search and local search.
The proposed topology is adaptively adjusted based on the stagnation state during the
optimization. Moreover, the position update strategy of FIPS is improved by a novel
adaptive mechanism, which helps dynamically change the impact degree of source infor-
mation. A novel algorithm named fully informed particle swarm with adaptive small-
world topology (ASWFIPS) is developed by applying the proposed adaptive small-world
topology to the improved FIPS. Experimental studies show that the proposed algorithm
outperforms classic PSO and FIPS algorithms over 13 benchmark functions in terms of
solution accuracy, convergence speed, and algorithm reliability.
Keywords: Particle swarm optimization, Adaptive small-world topology, Global opti-
mization

1. Introduction. Particle swarm optimization (PSO), which was proposed by Kennedy
and Eberhart [1], is a representative swarm intelligence (SI) algorithm. PSO emulates
the social behaviors in birds flocking and fish schooling. In PSO, particles are updated
with the help of the best previous success, the best previous success of neighborhood, the
current position, and previous velocity. The particles in the population randomly scatter
in the solution space and cooperate to search for the global optimum. As PSO is easy
to implement, it has been widely applied to solving various real-world problems in recent
years [2, 3, 4].

The traditional PSO algorithms could be classified into two types according to their
topologies, namely, global and local PSOs [1, 5, 6]. Global and local PSO algorithms both
have their strengths and weaknesses. In the global PSO algorithm, the neighborhood of
each particle is set as the entire population. Therefore, the global PSO algorithm con-
verges very fast but may easily get trapped into local optima. Various kinds of population
topologies have been designed for the local PSO algorithms, namely, ring, star, etc. The
local PSO algorithms have more chances to find the global optimum with a slower conver-
gence speed. Among the local PSO algorithms, fully informed particle swarm (FIPS) [7]
algorithm is a representative. The fully informed learning strategy in FIPS could further
enhance the population diversity, which is crucial for the search of PSO algorithms.

In the FIPS algorithm, rather than choosing one of the neighbors as the source of
influence, all the neighbors are set as the source. Thus, the degree of diversity could
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be directly controlled by the size of neighborhood. However, in the traditional FIPS
algorithm, the population topologies are totally regular. In this way, the neighbors of each
particle are unchanged during the optimization, which may cause the source information
to lose diversity.

Considering the above issues, an adaptive small-world topology is proposed for the
FIPS algorithm in this paper. In this topology, some particles communicate with the
neighborhood nearby while some others by chance communicate with the distant parti-
cles. Therefore, a better balance between global search and local search can be achieved.
During the optimization, the proposed adaptive topology is adjusted according to the
stagnation state of the population. In this way, the diversity of source information for
each particle is guaranteed. Furthermore, the particle update strategy of FIPS algorithm
is improved with an adaptive mechanism, which is also based on the stagnation state.
By combining the proposed adaptive small-world topology and the improved FIPS algo-
rithm, this paper proposes a novel algorithm named fully informed particle swarm with
an adaptive small-world topology (ASWFIPS). In the experimental studies, the proposed
ASWFIPS algorithm is compared with global particle swarm optimization (GPSO) [1],
local particle swarm optimization with ring topology (RPSO) [5], and fully informed par-
ticle swarm with ring topology (RFIPS) [7] over 13 test functions with various features.
Results show that ASWFIPS performs better than the GPSO, RPSO, and RFIPS in
terms of solution accuracy, convergence speed, and algorithm reliability.

The remainder of this paper is organized as follows. In Section 2, small-world network
and FIPS algorithm are briefly introduced. Subsequently, Section 3 describes the proposed
ASWFIPS algorithm in detail. Experiments with discussion are provided in Section 4.
Finally, Section 5 draws the conclusion.

2. FIPS and Small-World Network.

2.1. PSO. In the PSO algorithms, a particle is updated based on the best previous
success, the best previous success of neighbor, its current position, and previous velocity.
The update of velocity and position of the particles are defined as:

⃗vt+1 = ω × v⃗t + c1 × rand1 ×
(

⃗pBesti − X⃗t

)
+ c2 × rand2 ×

(
⃗gBest − X⃗t

)
(1)

X⃗t+1 = X⃗t + ⃗vt+1 (2)

where ω is the inertia weight, c1 and c2 refer to accelerating coefficients, rand1 and rand2

are two random values between 0 and 1, ⃗pBesti refers to the best position found by the
particle i and ⃗gBest refers to the position found by the member of its neighborhood that
has the best performance so far.

2.2. FIPS. In FIPS, rather than just choosing the best neighbor as the source, particles
utilize the information from all the neighbors. The velocity and position of particles in
FIPS are updated as follows:

⃗vt+1 = χ
(
vt + φ

(
P⃗m − X⃗t

))
(3)

X⃗t+1 = X⃗t + ⃗vt+1 (4)

where χ indicates the constriction coefficient, φ is the acceleration coefficient limit, P⃗m is
the comprehensive information from neighborhood and defined as:

P⃗m =

∑
k∈N ωkφ⃗k ⊗ P⃗k∑

k∈N ωkφ⃗k

(5)

φ⃗k = U⃗

[
0,

φ

|N |

]
, ∀k ∈ N (6)
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where N is the set of neighbors, P⃗k is the best position found by neighbor k, and φk is
the accelerating coefficient of the particle k. The parameter ω describes any aspect of the
particle that is hypothesized to be relevant. In general, the fitness of the best position
found by the particle and the distance from the particle to the current individual are
adopted. In this way, the particle is fully informed and thus the population diversity can
be enhanced.

2.3. Small-world network. According to the network theory [8], networks can be clas-
sified into three classes. In the first class, networks are completely regular, such as the
ring and star. In contrast, networks in the second class are randomly generated by some
specific probabilistic model. However, researchers have found that most of the real-world
networks do not belong to one of these two extremes. Instead, they lie between the regu-
lar and random networks and involve both regular and random features. These networks
are of the third class. Among these networks, small-world network has attracted lots of
attention.

A ring network and a small-world network are shown in Figure 1. In the ring network of
N vertices, each vertex is connected to its successors. Specifically, the successors of vertex
k are vertices k−1 and k+1. Starting with the ring network, a small-world network could
be constructed. With a probability P , each edge is reconnected to a vertex selected by
random. The number of edges or vertices is not changed during the rewriting procedure.
Some “long-range links” are introduced through the random reconnecting. With a small
number of long-range links, the diameter of the network is reduced while the clustering
coefficient stays large. By applying the small-world network as the population topology
to PSO, the balance between exploration and exploitation abilities of the algorithm can
be promoted.

Figure 1. Ring network and small-world network

3. ASWFIPS. In this section, an adaptive small-world topology is designed for FIPS
algorithm. During the optimization, the proposed topology is adaptively adjusted accord-
ing to the requirements of different evolution stages so as to balance the diversity and
convergence of the algorithm. Moreover, an adaptive mechanism based on the stagnation
state is designed for the particle update strategy of FIPS algorithm. A novel ASWFIPS
algorithm is developed by combining the proposed adaptive small-world topology and the
improved FIPS. The proposed algorithm could possess both good global search ability
and fast convergence speed, which is efficient in tacking various kinds of problems.

In what follows, the approach to constructing and updating the proposed small-world
topology is firstly introduced. Subsequently, the improved particle update of FIPS is
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introduced in detail. Finally, the fully informed particle swam with an adaptive small-
world topology (ASWFIPS) is algorithmically illustrated.

3.1. The proposed adaptive small-world topology. The proposed topology is initial-
ized as a small-world topology. As shown in Figure 1, at first, each particle i is connected
with its successor particles. Then, with a probability P1, each edge is reconnected to
a vertex chosen by random. Note that each dimension of particles is assigned with a
small-world network.

The proposed topology is adaptively adjusted according to the stagnation state of the
population. A stagnation coefficient Savg is defined as:

Savg =

∑
i∈P Si

NP
(7)

where Si indicates the number of generations particle i stagnates, P is the set of population
and NP indicates the population size. The average value of Si, namely, Savg, could help
indicate the stagnation state of the entire population. As shown in Algorithm 1, the
small-world topology is adaptively adjusted during optimization process. The topology is
updated once the value of Savg is larger than the threshold value Sk.

Algorithm 1 Topology update of particle i

1: if Savg ≥ Sk then
2: for each dimension j of particle i do
3: r = random(0,1);
4: if r ≤ P2 then
5: Randomly assign two neighbors to particle i;
6: else
7: Set two successors of particle i as its neighbors;
8: end if
9: end for

10: end if

3.2. Particle update. In the proposed topology, each particle has two neighbors. There-
fore, the parameter P⃗m could be simplified as:

P⃗m =
φ⃗1P⃗1ω1 + φ⃗2P⃗2ω2

φ⃗1ω1 + φ⃗2ω2

(8)

where P⃗1 and P⃗2 represent the first and second neighbors of current particle, respectively.
Accordingly, ω1 and ω2 are their weights. The weight of the neighbor k is related to its
fitness and defined as:

ωk =
fitk + 1∑
i∈N fiti + 1

(9)

where fiti is the fitness value of neighbor i, and N is the set of neighborhood. The
position of particles is updated as follows:

X⃗t+1 = X⃗t + Kc × ⃗vt+1 (10)

where parameter Kc is the weight of velocity. Its value is dynamic and could help dy-
namically adjust the weight of source information. Kc is adjusted as follows:

Kc =

{
1, Si > 8
(0.5, 1), otherwise

(11)

where Si denotes the number of stagnating generations for particle i. On the one hand, a
high value of Si indicates that the particle stagnates and thus the value of Kc is increased
to maintain a high weight of source information. On the other hand, a low value of Si
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indicates that the current particle has a good search state and thus Kc is decreased to
reduce the impact of source information. Based on this position update strategy, the
impact degree of neighbors for each particle could be adaptively controlled.

3.3. Overall process. The proposed adaptive small-world topology is embedded in the
improved FIPS algorithm to develop the ASWFIPS. The flowchart of ASWFIPS is shown
in Figure 2 and the overcall process contains the following steps:

(1) Initialize the positions and velocities of the population;
(2) Evaluate the position and select the best position;
(3) Update the state of stagnation and the small-world topology;
(4) Update the positions and velocities of the population;
(5) If the stopping criterion is not satisfied, return to Step 2.

Figure 2. Flowchart of the proposed ASWFIPS algorithm

4. Experimental Results.

4.1. Experimental setup. In the experiments, 13 benchmark functions with different
features are used to test the performance of ASWFIPS [9]. These functions are listed
in Table 1, where F1 to F5 are unimodal functions, F6 is a step function, F7 is a noisy
function, and F8 to F13 are multimodal functions with a great number of local optima.

Table 1. Characteristics of test functions

Functions Characteristics Dimension MNFEs

F1, F6, F7 Unimodal, separable 30 3.00E+05
F2, F3, F4, F5 Unimodal, nonseparable 30 3.00E+05
F9 Multimodal, separable 30 3.00E+05
F8, F10, F11, F12, F13 Multimodal, nonseparable 30 3.00E+05
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In what follows, experimental studies are carried out over these 13 test functions to
compare ASWFIPS algorithm with two PSO algorithms and one FIPS algorithm, namely,
GPSO, RPSO, and RFIPS. These algorithms are compared in terms of solution accuracy,
convergence speed, and algorithm reliability.

In ASWFIPS, P1 is set as 0.07, P2 linearly increases from 0.17 to 0.27 during the
optimization and Sk is set as 10. According to [7], χ and C are set as 0.7298 and 2.05,
respectively. All the algorithms are tested on 30 dimensions functions with population size
30 and maximum number of function evaluations (MNFEs) 300000. For each function,
30 independent trials are carried out by applying GPSO, RPSO, RFIPS, and ASWFIPS
under the same circumstances.

4.2. Results and comparisons. In Table 2, the mean and standard deviations of the
error values achieved by GPSO, RPSO, RFIPS, and the proposed ASWFIPS over 30
independent runs are presented. To show the advantage of proposed migration topology
in a statistical sense, single-problem Wilcoxon signed-rank test at a significance level 0.05
is performed, where the significantly better results are highlighted in boldface. It can be
observed that ASWFIPS comprehensively outperforms the compared algorithms. On the
one hand, for unimodal functions, the proposed algorithm could achieve higher solution
accuracy on F4 and F7 and have similar performance to the compared algorithms on the
other functions. On the other side, in optimizing multimodal functions, the proposed
ASWFIPS exhibits much stronger global search ability than the other three algorithms.

In order to compare the search speed and reliability, tolerance of each functions is set
and presented in Table 3 [9]. We record the success rates at which tolerances are found
over 30 runs and the mean NFEs required to find the tolerances. The best results are

Table 2. Comparison between ASWFIPS and other three PSO algorithms

Approaches ASWFIPS GPSO RPSO RFIPS

Mean Std Mean Std Mean Std Mean Std

F1 1.19E-59 4.00E-61 1.11E-59 6.27E-65 1.51E-83 1.80E-86 3.86E-30 6.31E-31
F2 3.03E-31 1.04E-31 6.48E-39 3.75E-42 2.43E-50 1.25E-51 1.82E-17 7.92E-18
F3 1.86E-03 1.56E-04 1.12E-02 1.03E-03 1.83E-05 6.34E-07 9.76E-01 3.20E-01
F4 4.29E-13 2.69E-14 3.51E-02 5.27E-02 2.59E-05 1.32E-06 2.30E-05 9.47E-06

F5 2.26E+01 1.79E+01 2.68E+01 6.24E-04 1.02E+01 6.03E-03 2.29E+01 2.22E+01
F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 7.52E-04 2.57E-04 5.24E-03 1.80E-03 3.52E-03 1.69E-03 2.20E-03 1.23E-03
F8 –9.26E+03 –1.04E+04 –9.94E+03 –1.07E+04 –8.02E+03 –9.10E+03 –1.08E+04 –1.16E+04

F9 8.06E+00 2.98E+00 1.69E+01 1.09E+01 4.70E+01 3.08E+01 2.65E+01 4.51E+00
F10 4.00E-15 4.00E-15 1.05E-14 7.55E-15 7.43E-15 4.00E-15 7.43E-15 4.00E-15
F11 0.00E+00 0.00E+00 7.40E-03 7.40E-03 2.05E-03 0.00E+00 0.00E+00 0.00E+00

F12 1.58E-32 1.57E-32 1.04E-02 1.57E-32 3.46E-03 1.57E-32 1.64E-31 9.96E-32
F13 6.54E-32 1.35E-32 2.20E-03 1.35E-32 3.66E-04 1.35E-32 1.98E-30 7.51E-31

Table 3. Success rate and convergence speed comparisons

Approaches Tolerance ASWFIPS GPSO RPSO RFIPS

NFEs SR % NFEs SR % NFEs SR % NFEs SR %
F1 200 169.46 100 3238.09 100 172.62 100 333.38 100
F2 10 128.05 100 2215.16 100 122.29 100 210.92 100
F3 10000 45.58 100 817.17 98 89.78 100 74.92 100

F4 20 74.66 100 1219.45 100 135.62 100 133.04 100
F5 2000 245.59 100 3939.8 93 262.91 100 453.52 100
F6 200 184.21 100 3297.62 100 177.37 100 330.37 100

F7 0.2 79.83 100 2171.77 99 142.65 100 148.21 100
F8 –8000 1206.52 100 2470.84 100 371.66 41 2980.66 100
F9 20 1449.65 100 6208.47 23 – 0 7551.81 36
F10 4 234.66 100 3626.11 100 212.76 100 422.58 100

F11 4 153.54 100 2968.52 100 150.75 100 264.58 100
F12 4 191.81 100 3445.31 100 264.37 100 32582 100
F13 20 181.54 100 3399.07 100 262.12 100 293.53 100
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Figure 3. Comparisons of convergence speed on six typical functions

highlighted in boldface. The results show that the proposed ASWFIPS algorithm con-
verges fastest on majority of the test functions. In Figure 3, the growth curves of success
counter over the number of function evaluations are plotted for six typical functions. It can
be observed that the proposed ASWFIPS algorithm shows the highest search efficiency.
Moreover, the ASWFIPS is the only algorithm that could guarantee the success rate of
100% on all the test functions. Overall, the proposed ASWFIPS algorithm outperforms
the compared PSO algorithms in terms of convergence speed and reliability.

5. Conclusion. An adaptive small-world topology for FIPS algorithm is proposed in this
paper. During the optimization, the proposed topology is dynamically adjusted according
to the requirements of different evolution states so as to balance the diversity and con-
vergence of the algorithm. In addition, an adaptive mechanism based stagnation state of
population is designed for improving the position update strategy of FIPS. By embedding
the proposed adaptive small-world topology in the improved FIPS, a novel ASWFIPS algo-
rithm is developed. Experimental results show that the proposed ASWFIPS outperforms
the compared GPSO, RPSO, and RFIPS algorithms in terms of solution accuracy, con-
vergence speed, and algorithm reliability. For future work, we will extend the ASWFIPS
algorithm to solve other complex optimization problems.
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