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Abstract. The transportation problem is a special class of the linear programming prob-
lem to be used for reducing cost and improving service in logistics and supply chain man-
agement over the past years. The fuzzy transportation problem arises when the nature
of the related coefficients are uncertain or imprecise. This study examines the classical
transportation problem with fuzzy demands and fuzzy supplies and introduces two kinds of
fuzzy numbers to characterize the imprecise values. Two methods for ranking triangular
and interval-valued fuzzy numbers as well as an approach to solving the fuzzy transporta-
tion problem are proposed. Numerical examples are given to illustrate and analyze final
solutions obtained when using triangular and interval-valued fuzzy numbers to the fuzzy
problem. The proposed approach obtains very good solutions to the transportation prob-
lems with fuzzy demands and fuzzy supplies.
Keywords: Fuzzy transportation problem, Fuzzy demand, Fuzzy supply, Triangular
fuzzy number, Interval-valued fuzzy number

1. Introduction. The transportation problem is concerned with shipping a commodity
between a set of sources (e.g., manufacturers) and a set of destinations (e.g., warehouses).
Each source has a capacity dictating the amount it supplies and each destination has
a demand dictating the amount it receives. The objective is to determine the amounts
shipped from each source to each destination that minimizes the total cost while satisfy-
ing both the supply limits and the demand requirements [15]. Several efficient heuristics
and algorithms have been developed over the past decades to solve the transportation
problem when the cost coefficients and the supply and demand values are known exactly.
Some well-known methods include the north-west corner rule, the least-cost, Vogel’s ap-
proximation and Hungarian algorithm [15]. Nevertheless, in real world applications, the
supply and demand quantities in the transportation problem are sometimes hardly speci-
fied precisely because of changing weather, social and economic conditions, uncertainty in
judgements, or lack of evidence [13]. These imprecise data are not always well represented
by random variable selected from a probability distribution. However, fuzzy sets provide
a powerful tool to model and solve the problem [8].

One straightforward approach to solving the fuzzy transportation problem is to apply
the existing fuzzy linear programming techniques directly. Zimmermann [16] showed that
solutions obtained by fuzzy linear programming are always efficient and developed fuzzy
optimization methods for solving the fuzzy optimization problem. Heigearataigh [4] in-
troduced a fuzzy transportation algorithm for solving transportation problem with fuzzy
constraints and also investigated the relationship between the algebraic of the optimal
solution of the deterministic problem. Kaufmann and Gupta [6] examined the trans-
portation problem with fuzzy data and then proposed the stepping method to deal with
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fuzzy numbers. Chanas et al. [1] investigated the transportation problem with fuzzy sup-
plies and fuzzy demands and solved them via the parametric programming technique in
terms of the Bellman-Zadeh criterion. Chanas and Kuchta [2] proposed a concept of the
optimal solution of the transportation problem with fuzzy coefficients and an algorithm
determining this solution. Tada and Ishii [14] considered an integer fuzzy transportation
problem by introducing two kinds of membership functions corresponding to supplies and
demands. The objective is to determine an optimal flow that maximizes the smallest
value of all membership functions under the constraint that the total transportation cost
must not exceed a certain upper limit. Liu and Kao [12] developed a method to find the
membership function of the fuzzy total transportation cost when the unit shipping costs,
the supply quantities, and the demand quantities are fuzzy numbers. Their method is
based on extension principle to transform the fuzzy transportation problem to a pair of
mathematical programs. Kumar and Kaur [9] proposed two methods to find the exact
fuzzy optimal solution of unbalanced fuzzy transportation problem by representing all the
parameters as LR flat fuzzy numbers. Li et al. [10] presented an evolutionary program
for solving the fuzzy multicriteria solid transportation problem in which the coefficients of
objective functions are represented as fuzzy numbers. Gao et al. [3] proposed a method
for minimizing transportation cost when the supply, demand and transportation cost are
interval numbers. For this case, an auxiliary problem is obtained in order to find a solu-
tion. Kaur et al. [7] presented an application of a modified fuzzy programming technique
for the fuzzy optimal solution to the single objective fuzzy transportation problem with
fuzzy parameters in terms of triangular fuzzy numbers without defuzzifying the problem.

This study, however, examines the classical transportation problem with fuzzy demands
and fuzzy supplies and then uses triangular and interval-valued fuzzy numbers to char-
acterize the imprecise data. When the coefficients are represented with fuzzy numbers,
the values of objective functions also become fuzzy numbers. Obviously, when the supply
and demand quantities are uncertain, the total transportation cost will vary within an
interval. Since a fuzzy number represents many possible real numbers, it is not easy to
compare among solutions to determine the Pareto optimal solution. Subsequently, two
methods for ranking triangular and interval-valued fuzzy numbers as well as an approach
to solving the fuzzy transportation problem are then proposed. Numerical examples are
given to illustrate and analyze final solutions obtained when using triangular and interval-
valued fuzzy numbers to the fuzzy problem. The proposed approach obtains very good
solutions to the transportation problems with fuzzy demands and fuzzy supplies.

The paper is organized as follows. Section 2 states the preliminaries where two proposed
distance methods for ranking triangular and interval-valued fuzzy numbers are defined.
Section 3 formulates the fuzzy transportation problem with fuzzy demands and fuzzy
supplies. Two numerical examples are given to illustrate the effectiveness of the proposed
approach to solving fuzzy transportation problems in Section 4. Section 5 concludes the
paper with future work.

2. Preliminaries.

Definition 2.1. A fuzzy set P̃α, 0 < α ≤ 1, defined on R = (−∞,∞) is called a level α
fuzzy point which has the following membership function

µp̃α(x) =

{
α, x = p
0, otherwise

(1)

Definition 2.2. A fuzzy set [pα, qα], 0 ≤ α ≤ 1, defined on R is called a level α fuzzy
interval which has the following membership function

µ[pα,qα](x) =

{
α, p ≤ x ≤ q
0, otherwise

(2)
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Definition 2.3. The level α triangular fuzzy number B̃, 0 < α ≤ 1, is a fuzzy set defined
on R with the membership function as

µB̃(x) =


α(x−p)

q−p
, p ≤ x ≤ q

α(r−x)
r−q

, q ≤ x ≤ r

0, otherwise

(3)

Note that a level α triangular fuzzy number is denoted by B̃ = (p, q, r; α) and the family
of all level α fuzzy numbers is denoted by FN(α) = {(p, q, r; α)|∀p < q < r, p, q, r ∈ R},
0 < α ≤ 1. When p = q = r, (p, q, r; α) = (r, r, r; α) = r̃α, the level α fuzzy number is
the level α fuzzy point, and r̃α is a member of FN(α). In particular, (p, q, r; 1) is called
triangular fuzzy number and denoted by (p, q, r).

Definition 2.4. A fuzzy set Ã defined on R, where Ã = {(x, [µÃL(x), µÃU (x)])}, x ∈ R
and 0 ≤ µÃL(x) ≤ µÃU (x) ≤ 1, is called an interval-valued fuzzy set. Symbolically,

Ã is denoted by
[
ÃL, ÃU

]
. Let ÃL = (a, b, c; λ) and ÃU = (p, b, r; ρ), 0 < λ ≤ ρ ≤

1. Then the level (λ, ρ) interval-valued fuzzy number is defined by Ã =
[
ÃL, ÃU

]
=

[((a, b, c; λ), (p, b, r; ρ))], p < a < b < c < r. The membership function of Ã can be
expressed as

µÃL(x) =


λ(x−a)

b−a
, a ≤ x ≤ b

λ(c−x)
c−b

, b ≤ x ≤ c

0, otherwise

(4)

µÃU (x) =


ρ(x−p)

b−p
, p ≤ x ≤ b

ρ(r−x)
r−b

, b ≤ x ≤ r

0, otherwise

(5)

The family of all level (λ, ρ) interval-valued fuzzy numbers is denoted by FIV (λ, ρ) =
{[(a, b, c; λ), (p, b, r; ρ)]|∀p < a < b < c < r, a, b, c, p, r ∈ R}, 0 < λ < ρ ≤ 1. In particular,
if ÃL = (a, b, c; λ) and ÃU = (p, b, r; ρ), then Ã is called (λ, 1) interval-valued fuzzy number
(see Figure 1).

Figure 1. The level (λ, 1) interval-valued fuzzy number

Let B̃ = (a, b, c; λ) ∈ FN(λ). The α-cut of B̃ is B(α) = [BL(α), BR(α)], 0 ≤ α ≤ λ,
where BL(α) = a+(b−a)α

λ
is the left endpoint of the α-cut and BR(α) = c+(c−b)α

λ
is the

right endpoint of the α-cut. From Definition 2.4, the distance of BL(α) is d(BL(α), 0) =
BL(α) and the distance of BR(α) is d(BR(α), 0) = BR(α). Then, the distance of in-
terval [BL(α), BR(α)] measured from the origin is defined by d([BL(α), BR(α)], 0) =
1
2
(d(BL(α), 0)+ d(BR(α), 0)) = 1

2
(a+ c+(2b− a− c)α

λ
), 0 ≤ α ≤ λ. Because the intervals
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[BL(α), BR(α)] and [BL(α)α, BR(α)α] have a one-to-one mapping for each α ∈ [0, λ], the
distance of [BL(α)α, BR(α)α] measured from 0̃1 (y-axis) is defined by d([BL(α)α, BR(α)α],
0̃1) = 1

2

(
a + c + (2b − a − c)α

λ

)
. Because the function is continuous over the interval

0 ≤ α ≤ λ, the integral method can be applied to obtaining the mean value of the
distance. That is,

1

λ

∫ λ

0

d
(
[BL(α)α, BR(α)α] , 0̃1

)
dα =

1

2λ

∫ λ

0

(
a + c + (2b − a − c)

α

λ

)
dα =

1

4
(2b + a + c).

Definition 2.5. For each λ ∈ (0, 1] and B̃ = (a, b, c; λ) ∈ FN(λ), the ranking distance

from 0̃1 to B̃ is defined by d
(
B̃, 0̃1

)
= 1

4
(2b + a + c).

Definition 2.6. Let Ã = [(a, b, c; λ), (p, b, r; ρ)] ∈ FIV (λ, ρ), 0 < λ < ρ ≤ 1. The ranking

distance from 0̃1 to Ã is defined by d
(
Ã, 0̃1

)
= 1

8

(
6b + a + c + 4p + 4r + 3(2b − p − r)λ

ρ

)
.

Definition 2.7. Let C̃ = (a, b, c; λ) and D̃ = (p, q, r; λ) ∈ FN(λ). For λ ∈ (0, 1], the
ranking of level λ fuzzy numbers on FN(λ) is defined by

D̃ ≺ C̃ iff d
(
D̃, 0̃1

)
< d

(
C̃, 0̃1

)
D̃ ≈ C̃ iff d

(
D̂, 0̃1

)
= d

(
C̃, 0̃1

)
3. Problem Formulation. Given m origins and n destinations, the transportation prob-
lem can be formulated as the following linear programming model [11]:

Minimize Z =
m∑

i=1

n∑
j=1

cijxij (6)

Subject to
n∑

j=1

xij = ai, i = 1, 2, . . .,m (7)

m∑
i=1

xij = bj, j = 1, 2, . . ., n

xij ≥ 0, for all i and j

(8)

where xij is the amount of units shipped from origin i to destination j and cij is the
cost of shipping one unit from origin i to destination j. The amount of supply at origin
i is ai and the amount of demand at destination j is bj. The objective is to determine
the unknown xij that will minimize the total transportation cost while satisfying all the
supply and demand constraints. The above formulation assumes that total supply and
total demand are equal to one another, that is,

m∑
i=1

ai =
n∑

j=1

bi (9)

This balanced condition is treated as a necessary and sufficient condition for the existence
of a feasible solution to the problem [10]. The simplex method, the least-cost method,
north-west corner rule or Vogel’s approximation method [15] can be used to obtain the
optimal solution for the transportation problem defined in (6)-(8) if cij, ai and bj are
known, for i = 1, 2, . . ., m and j = 1, 2, . . ., n. In this study, however, we consider the
supply values, the demand values and the equality constraint are all fuzzy. In other
words, the coefficients ai and bj are uncertain or lack of precision. The uncertainties can
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be represented using fuzzy numbers and hence the equations in (6)-(9) can be formulated
as the following fuzzy transportation problem:

Minimize Z =
m∑

i=1

n∑
j=1

cijxij (10)

Subject to
n∑

j=1

xij ≈ ãi, i = 1, 2, . . ., m (11)

m∑
i=1

xij ≈ b̃j, j = 1, 2, . . ., n, xij ≥ 0, for all i and j (12)

Then the balanced condition becomes
m∑

i=1

ai ≈
n∑

j=1

bi (13)

If we assume the coefficients ai and bj in (11) and (12) are triangular fuzzy numbers,
denoted by p̃i = (pi − ∆i1, pi, pi + ∆i2), 0 ≤ ∆i1 ≤ pi, 0 ≤ ∆i2 ≤ pi, 1 ≤ i ≤ m, and
q̃j = (qj − ∆j1, qj, qj + ∆j2), 0 ≤ ∆j1 ≤ qj, 0 ≤ ∆j2 ≤ qj, 1 ≤ j ≤ n, the membership

function of p̃i and q̃j is as defined in (3). Generally, we use B̃ = (p, q, r), p < q < r,
as the triangular fuzzy number. Similarly, if we assume that the coefficients ai and bj

are interval-valued fuzzy numbers, denoted by Ã =
[
ÃL, ÃU

]
= [((a, b, c; λ), (p, b, r; ρ))],

p < a < b < c < r, the membership function of Ã is then as defined in (4) and (5).
When the coefficients ai and bj in (11) and (12) are fuzzy numbers, i.e., fuzzy supplies
and fuzzy demands, the transportation problem becomes a fuzzy transportation problem.
Because a fuzzy number may represent many possible real numbers, it is not easy to
compare among solutions to determine the Pareto optimal solution. Therefore, ranking
methods for fuzzy numbers help us to compare fuzzy numbers and then Pareto optimal
solutions can be determined based on the ranked values of the objective function. Several
methods of ranking fuzzy numbers have been proposed over the past decades [5,8]. Here,
we propose two useful and flexible ranking methods as defined in Definitions 2.5 and 2.6.

4. Numerical Examples. Two numerical examples are given here to illustrate the effec-
tiveness of the proposed approach to solving transportation problem with fuzzy supplies
and fuzzy demands.

Example 4.1. Consider a transportation problem with two supplies (m = 2) and three
demands (n = 3). The transportation costs are in the following: c11 = 16, c12 = 15,
c13 = 25, c21 = 19, c22 = 24 and c23 = 12. The amount of supplies are a1 = 10 and
a2 = 8. The amount of demands are b1 = 5, b2 = 6 and b3 = 7 (see Figure 2). The north-
west corner rule is applied to solving the problem obtaining x11 = 4, x12 = 6, x13 = 0,
x21 = 1, x22 = 0, x23 = 7 and the minimum cost Z = 257. Consider the fuzzy sup-
plies and fuzzy demands based on using triangular fuzzy numbers. The fuzzy supplies are
ã1 = (7.2, 10, 14.5) and ã2 = (5.6, 8, 10.5). The fuzzy demands are b̃1 = (2.8, 5, 7.4),

b̃2 = (4.5, 6, 9.5) and b̃3 = (4.6, 7, 10.6). Using the distance ranking method for tri-
angular fuzzy numbers as defined in Definition 2.5, the estimated values obtained are
a∗

1 = 10.425, a∗
2 = 7.9, b∗1 = 5.05, b∗2 = 6.5 and b∗3 = 7.3. The final solution obtained

from the proposed approach is x11 = 4.45, x12 = 6.5, x13 = 0, x21 = 0.6, x22 = 0 and
x23 = 7.3 and the minimal transportation cost Z∗ = 267.7. Next, consider the fuzzy
supplies and fuzzy demands using interval-valued fuzzy numbers [(a, b, c; λ), (p, b, r; ρ)]
with λ = 0.9 and ρ = 1. The coefficients are ã1 = [(9, 10, 11; 0.9), (6, 10, 19; 1)], ã2 =

[(7, 8, 13; 0.9), (6, 8, 14; 1)], b̃1 = [(4, 5, 7; 0.9), (3, 5, 11; 1)], b̃2 = [(5, 6, 13; 0.9), (4, 6, 16; 1)]
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Figure 2. A transportation example with two supplies and three demands

and b̃3 = [(3, 7, 8; 0.9), (1, 7, 9; 1)]. Using the distance ranking method for interval-valued
fuzzy numbers as defined in Definition 2.6, the estimated values obtained are a∗

1 = 10.41,
a∗

2 = 8.57, b∗1 = 5.39, b∗2 = 7.02 and b∗3 = 6.49. The final solution obtained is x11 = 3.39,
x12 = 7.02, x13 = 0.0, x21 = 2.0, x22 = 0.0 and x23 = 6.57 and the minimal transportation
cost Z∗ = 276.38. Comparing two fuzzy numbers obtained with that of the crisp problem,
it shows that the interval-valued fuzzy numbers obtained have a higher cost than those of
the triangular fuzzy numbers.

Example 4.2. Consider another two supplies (m = 2) and three demands (n = 3)
transportation problem. The problem has the following form:

Min Z = 10x11 + 50x12 + 80x13 + 75x21 + 60x22 + 20x23

s.t. x11 + x12 + x13
∼= ã1

x21 + x22 + x23
∼= ã2

x11 + x12
∼= b̃1

x12 + x22
∼= b̃2

x13 + x23
∼= b̃3

x11, x12, x13, x21, x22, x23 ≥ 0

For the crisp problem, the amount of supplies are a1 = 85 and a2 = 60 and the amount
of demands are b1 = 40, b2 = 30 and b3 = 55, as listed in Table 1. The optimal solution
obtained from the least-cost method is x11 = 55, x12 = 30, x13 = 0, x21 = 0, x22 = 0,
x23 = 60 and the minimal transportation cost Z = 3250. Assume that the fuzzy supplies
and fuzzy demands based on using triangular fuzzy numbers are given as ã1 = (74, 85, 90)

and ã2 = (48, 60, 68), b̃1 = (32, 40, 56), b̃2 = (20, 30, 46) and b̃3 = (42, 55, 80). The
estimated values obtained are a∗

1 = 83.5, a∗
2 = 59, b∗1 = 42, b∗2 = 31.5 and b∗3 = 58.

The final solution obtained from the proposed approach is x11 = 52.0, x12 = 31.5, x13 =
0.0, x21 = 0.0, x22 = 0.0 and x23 = 59.0 and the minimal transportation cost Z∗ =
3275.0. Consider the fuzzy supplies and fuzzy demands using interval-valued fuzzy numbers
[(a, b, c; λ), (p, b, r; ρ)] with λ = 0.9 and ρ = 1. Let ã1 = [(75, 85, 94; 0.9), (65, 85, 99; 1)],

ã2 = [(48, 60, 68; 0.9), (40, 60, 74; 1)], b̃1 = [(32, 40, 54; 0.9), (30, 40, 60; 1)], b̃2 = [(22, 30, 45;

0.9), (18, 30, 50; 1)] and b̃3 = [(42, 55, 70; 0.9), (38, 55, 78; 1)]. The estimated values of
interval-valued fuzzy numbers obtained are a∗

1 = 84.45, a∗
2 = 59.26, b∗1 = 41.19, b∗2 = 31.09

Table 1. Shipping costs, supplies and demands

XXXXXXXXXXXXm
n

b1 b2 b3 amount of supplies

a1 10 50 80 85
a2 75 60 20 60

amount of demands 40 30 55
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and b∗3 = 55.55. The final solution obtained is x11 = 53.36, x12 = 31.09, x13 = 0.0, x21 =
2.0, x22 = 0.0 and x23 = 59.26 and the minimal transportation cost Z∗ = 3273.3. On the
other hand, if λ = 0.5 is used instead of 0.9 obtaining ã1 = [(75, 85, 94; 0.5), (65, 85, 99; 1)],

ã2 = [(48, 60, 68; 0.9), (40, 60, 74; 1)], b̃1 = [(32, 40, 54; 0.5), (30, 40, 60; 1)], b̃2 = [(22, 30, 45;

0.5), (18, 30, 50; 1)] and b̃3 = [(42, 55, 70; 0.5), (38, 55, 78; 1)], then, the estimated values
become a∗

1 = 84, a∗
2 = 58.81, b∗1 = 41.94, b∗2 = 31.69 and b∗3 = 56. The final solution

obtained is x11 = 52.31, x12 = 31.68, x13 = 0.0, x21 = 2.0, x22 = 0.0 and x23 = 58.81 and
the minimal transportation cost Z∗ = 3283.8. The minimal cost obtained from λ = 0.5 is
higher than that of λ = 0.9. We concluded that when the fluctuation becomes larger in the
interval-valued fuzzy numbers, the transportation cost obtained also becomes higher.

5. Conclusions. This study has investigated the classical transportation problem with
fuzzy demands and fuzzy supplies. When the coefficients are represented using fuzzy
numbers, the values of objective functions also become fuzzy numbers. Obviously, when
the supply and demand quantities are uncertain or imprecise, the total transportation
cost will vary within an interval. Two methods for ranking triangular and interval-valued
fuzzy numbers as well as an approach to solving the fuzzy transportation problem are
proposed. Numerical examples are given to illustrate and analyze final solutions obtained
when using triangular and interval-valued fuzzy numbers for the fuzzy problem. The
proposed approach obtains very good solutions to the fuzzy transportation problems.
Future study will focus on using other approaches to solving the fuzzy problem.
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