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Abstract. This paper deals with a design problem of a simple adaptive control (SAC)
system with a parallel feedforward compensator (PFC). To adopt SAC, the controlled
system has to be almost strictly positive real (ASPR). In the proposed method, the ASPR-
ness of the augmented system will be maintained by adaptive PFC which is using online
input/output data. This enables us to maintain the stability of SAC even if the controlled
system is unknown and is changing during the operation. In addition, the boundedness
of the signals in the control system will be analyzed.
Keywords: Simple adaptive control, ASPR, Parallel feedforward compensator

1. Introduction. In recent decades, almost strictly positive real (ASPR) based adaptive
output feedback controls, which are typified by simple adaptive control (SAC) [1], have
received a lot of attention [2, 3, 4, 5]. Under ASPR conditions, the method can constitute
a stable adaptive control system only with the output feedback. Unfortunately, however,
the ASPR conditions are very severe conditions for actual systems and most of the actual
system does not satisfy the conditions. To overcome this problem, the introduction of
a parallel feedforward compensator (PFC) has been proposed [5]. By introducing PFC,
the augmented system which consists of the plant and the PFC can satisfy the ASPR
conditions. With this in mind, several design methods of such a PFC have been proposed
[6, 7, 8, 9]. Recently, an adaptive PFC, whose parameter is adaptively adjusted by online
data, has been proposed [10]. Although the output of augmented system tracks to the
reference signal, the output of the controlled system might not track to the reference
signal because of the gain of PFC.

With this in mind, the introduction of adaptive PFC to the SAC will be proposed in
this paper. The boundedness of all the signals in the control system will also be analyzed.

This paper is organized as follows. Section 2 shows the problem statements which are
considered in this paper. In Section 3, ideal PFC will be shown. In Sections 4 and 5,
parameter adjusting laws of adaptive feedback gain and the design of adaptive PFC will
be proposed. Then the boundedness of the control system with parameter adjusting laws
will be analyzed in Section 6. Numerical simulation is in Section 7. Finally, concluding
remarks are presented in Section 8.
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Figure 1. Augmented system with PFC

2. Problem Statements. Let’s consider an augmented system shown in Figure 1. Here,
G(s) is unknown but stable single input single output (SISO) controlled system and
H(s, ρ) is a PFC which is parameterized by ρ. Also, the controlled system G(s) can be
described by the following nth order SISO state-space representation.

ẋ(t) = Ax(t) + bu(t), y(t) = cTx(t) (1)

Then, for this system, we consider a tracking control to the following nmth order SISO
reference model output ym(t).

ẋm(t) = Amxm(t) + bmr(t), ym(t) = cT
mxm(t) (2)

where r(t) is a reference signal. We suppose that G(s), H(s, ρ) and the reference model
satisfy the following assumptions.

Assumption 2.1. [i]

rank

[
A b
cT 0

]
= n + 1 (3)

[ii] Ωij is the solution of the following equation.[
A b
cT 0

] [
Ω11 Ω12

Ω21 Ω22

]
= In+1 (4)

[iii] The eigenvalues of Ω11 are not equal to the reciprocal of eigenvalues of Am.

Assumption 2.2. H(s, ρ) = 0 with ρ = 0.

Assumption 2.3. The reference signal r(t) is bounded and its derivative signal ṙ(t) is
also bounded.

When Assumption 2.1 holds, for the command generator tracker (CGT) problem, the
following theorem and lemma stand [1].

Theorem 2.1. The ideal input u∗(t) and the ideal state x∗(t), which can achieve perfect
tracking to the reference model output, that is,

y(t) ≡ ym(t) (5)

can be given by the following equation[
x∗(t)
u∗(t)

]
=

[
S11 S12

S21 S22

] [
xm(t)
um(t)

]
+

[
Ω11

Ω21

]
v(t) (6)

with
S11 = Ω11S11Am + Ω12c

T
m, S12 = Ω11S11bm

S21 = Ω21S11Am + Ω22c
T
m, S22 = Ω21S11bm

Ω11v̇(t) = v(t) − S12u̇m(t), v(0) = 0 (7)

Lemma 2.1. When the signals r(t) and ṙ(t) are bounded, then the signal v(t) in Equation
(7) is bounded.
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Now, from Figure 1, the open-loop system from the input u(t) to the output ya(t,ρ) of
the augmented system with a PFC can be expressed by Ga(s, ρ) = G(s) + H(s,ρ).

Under these statements, the objective here is to adjust the parameters of the PFC
adaptively so that the augmented system Ga(s,ρ) becomes close to a given ideal ASPR
model G∗

a(s) and estimates the parameters of the gains k∗, S21 = k∗
x and S22 = k∗

r for the
tracking control.

3. Ideal PFC. Define the ideal output y∗
a(t) of the ideal augmented system G∗

a(s) as
follows.

y∗
a(t) = G∗

a(s) [u(t)] (8)

Then, we consider finding parameters which make the output yh(t,ρ) of adaptive PFC as
ideal output y∗

h(t).
Here, the ideal output of PFC y∗

h(t) can be described by using the output y(t) of
controlled system as follows.

y∗
h(t) = y∗

a(t) − y(t) (9)

Now, suppose that the ideal PFC H∗(s) given by the following nhth compensator:

H∗(s) =
N∗

H(s)

D∗
H(s)

=
b∗1s

nh−1 + b∗2s
nh−2 + · · · + b∗nh

snh + a∗
1s

nh−1 + · · · + a∗
nh

(10)

then, the ideal output of the PFC can also be described as follows.

y∗
h(s) = H∗(s) [u(t)] (11)

By introducing the following stable nhth filter

1

F (s)
=

1

snh + f1snh−1 + · · · + fnh

(12)

the ideal output of the PFC can be represented by

y∗
h(t) =

Z(s)

F (s)
[y∗

h(t)] +
N∗

H(s)

F (s)
[u(t)] = ρ∗Tz(t) (13)

where ρ∗ = [z1 z2 · · · znh
b1 b2 · · · bnh

]T (zi = fi − ai) and z(t) =
[

snh−1

F (s)
y∗

h · · · 1
F (s)

y∗
h

snh−1

F (s)
u · · · 1

F (s)
u
]T

. Unfortunately, the ideal parameter ρ is unknown, and we consider

adjusting the PFC adaptively.

4. Adaptive Control Input. Let us consider adjusting the parameters, which can re-
alize the ideal input by CGT, adaptively.

Here, the feedforward input will not be applied to PFC. Thus, the control system will
be configured as Figure 2. Then consider designing the input by

u(t) = ue(t) + uf (t) (14)

ue(t) = −k(t)ēa(t) − ρz ∥z̄f (t)∥2 ēa(t), uf (t) = kx(t)
Txm(t) + kr(t)r(t) (15)

where z̄f (t) will be given later in Equation (25).
The gains k(t), kx(t) and kr(t) are adaptively adjusted by the adjusting laws:

k̇(t) = γēa(t)
2 − σk(t) (16)

k̇x(t) = −Γxxm(t)ēa(t) − σxkx(t) (17)

k̇r(t) = −γrr(t)ēa(t) − σrkr(t) (18)

where,

ēa(t) = ȳa(t) − ym(t), ȳa(t) = y(t) + ȳh(t) (19)

and ȳh(t) is output of the PFC generated by the input ue(t).
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Figure 2. SAC with adaptive PFC

5. Adaptive PFC. From Equation (13), the output of the PFC generated by using
estimated value of parameter ρ and input u can be described as follows:

yh(t,ρ) = ρ(t)Tz(t), z(t) = z(y∗
h, u) (20)

Also, the output with the parameter ρ and the input uf can be described as follows:

yhf (t, ρ) = ρTzf (t), zf (t) =

[
snh−1

F (s)
yhf · · ·

1

F (s)
yhf

snh−1

F (s)
uf · · · 1

F (s)
uf

]T

(21)

Then the output of the PFC with ideal parameter ρ∗ and input ue can be described as

ȳh(t,ρ
∗) = H(s,ρ∗)[ue(t)] = H(s, ρ∗)[u(t) − uf (t)] = yh(t,ρ

∗) − yhf (t, ρ
∗) (22)

Here, define the output of adaptive PFC as

ȳh(t) = yh(t) − yhf (t) (23)

where,

yh(t) = G∗
a(s)

[
ρ(t)Tz̄(t)

]
, z̄(t) = G∗−1

a (s)[z(t)] (24)

yhf (t) = G∗
a(s)

[
ρ(t)Tz̄f (t)

]
, z̄f (t) = G∗−1

a (s)[zf (t)] (25)

with estimated parameter ρ(t). ρ(t) is adaptively adjusted by the following parameter
adjusting law.

ρ̇(t) = −Γh (z̄(t) − z̄f (t)) ēa(t) − σhρ(t) (26)

6. Boundedness Analysis. In this section, the boundedness of all the signals in the
control system, which is configured with (14) to (19), (23) and (26), is shown.

First, from the relational expression of ȳ∗
h(t) = y∗

h(t) − y∗
hf (t), the output of PFC with

ue can be represented as

ȳh(t) = ȳh(t) − ȳ∗
h(t) + ȳ∗

h(t) = (yh(t) − yhf (t)) − (y∗
h(t) − y∗

hf (t)) + ȳ∗
h(t)

= G∗
a

[
∆ρ(t)T (z̄(t) − z̄f (t))

]
+ y∗

h(t) − ρ∗Tzf (t) (27)

where ∆ρ = ρ(t) − ρ∗ is estimation error of PFC parameter vector. Also, the output
ȳa(t) of augmented system, can be represented from Equations (8), (19) and (27) as

ȳa(t) = y∗
a(t) − y∗

h(t) + ȳh(t)

= G∗
a(s)[ue(t) + uf (t)] + G∗

a

[
∆ρ(t)Tz̄(t)

]
− G∗

a

[
∆ρ(t)Tz̄f (t)

]
− ρ∗Tzf (t)

= G∗
a(s)[ue(t)] + G∗

a(s)
[
uf (t) − u∗

f (t)
]
+ G(s)[u∗

f (t)] + ρ∗T (
z⋆

f (t) − zf (t)
)

+G∗
a

[
∆ρ(t)Tz̄(t)

]
− G∗

a

[
∆ρ(t)Tz̄f (t)

]
(28)
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with

z⋆
f (t) =

[
snh−1

F (s)
y⋆

hf · · ·
1

F (s)
y⋆

hf

snh−1

F (s)
u∗

f · · · 1

F (s)
u∗

f

]T

, y⋆
hf (t) = H∗(s)

[
u∗

f (t)
]

(29)

Since G(s)[u∗
f (t)] = ym(t) stands, the error equation can be represented as follows.

ēa(t) = G∗
a(s)

[
ue(t) + ∆ρ(t)T (z̄(t) − z̄f (t)) + uf (t) − u∗

f (t) + ρ∗T(z̄⋆
f (t) − z̄f (t))

]
(30)

Then, it can be represented as the following state equation. ẋa(t) = Aaxa(t) + ba

{
ue(t) + ∆ρ(t)T (z̄(t) − z̄f (t)) + ∆kx(t)

Txm(t)
+∆kr(t)r(t) − Ω21v(t) + ρ∗T(z̄⋆

f (t) − z̄f (t))
}

ēa(t) = cT
a xa(t)

(31)

where ∆kx(t) = kx(t)−k∗
x and ∆kr(t) = kr(t)− k∗

r are estimation error of gains. Finally,
because the augmented system is ASPR and thus it has relative degree of 1, the augmented
system can be described as follows.

˙̄ea(t) = aēa(t) + b
{
ue(t) + ∆ρ(t)T(z̄(t) − z̄f (t)) + ∆kx(t)

Txm(t)
+∆kr(t)r(t) − Ω21v(t) +ρ∗T(z̄⋆

f (t) − z̄f (t))
}

+ cT
η ηa(t)

η̇a(t) = Aηηa(t) + bηēa(t)
(32)

Here, we consider positive definite function:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t)

V1(t) = ēa(t)
2, V2(t) = ηa(t)

TPηηa(t), V3(t) =
b

γ
∆k(t)2

V4(t) = b∆kx(t)
TΓ−1

x ∆kx(t) +
b

γr

∆kr(t)
2, V5(t) = b∆ρ(t)TΓ−1

h ∆ρ(t)

(33)

where ∆k(t) = k(t) − k∗ is the estimation error of feedback gain.
The time derivative of V1(t) to V5(t) can be obtained as follows.

V̇1(t) = −2(bk∗ − a)ēa(t)
2 − 2b∆k(t)ēa(t)

2 − 2bρz ∥z̄f (t)∥2 ēa(t)
2 + 2bcT

η ηa(t)ēa(t)

+2b∆ρ(t)T(z̄(t) − z̄f (t))ēa(t) + 2b∆kx(t)
Txm(t)ēa(t) + 2b∆kr(t)r(t)ēa(t)

−2bΩ21v(t)ēa(t) + 2bρ∗T(z̄⋆
f (t) − z̄f (t))ēa(t) (34)

V̇2(t) = ηa(t)
T

(
AT

η Pη + PηAη

)
ηa(t) + bT

η Pηηa(t)ēa(t) + ηa(t)
TPηbηēa(t) (35)

V̇3(t) = 2b∆k(t)ēa(t)
2 − 2bσ

γ
∆k(t)k(t) (36)

V̇4(t) = −2b∆kx(t)
Txm(t)ēa(t) − 2bσx∆kx(t)

TΓ−1
x kx(t)

−2b∆kr(t)r(t)ēa(t) −
2bσr

γr

∆kr(t)kr(t) (37)

V̇5(t) = −2b∆ρ(t)T(z̄(t) − z̄f (t))ēa(t) − 2bσh∆ρ(t)TΓ−1
h ρ(t) (38)

Then from Assumption 2.3 and Lemma 2.1, there exists positive constant vm such that
∥v(t)∥ ≤ vm, and V̇ (t) can be evaluated as follows.

V̇ (t) ≤ −
(

2bk∗ − 2a − 1

δ1

− 1

δ2

− 1

δ3

− 1

δ4

)
ēa(t)

2

−
(
λmin [Qη] − δ1∥cη∥2 − δ4∥bT

η Pη∥2
)
∥ηa(t)∥2

−
(

2bσ

γ
− δ5

)
∆k(t)2 −

(
2bσxλmin

[
Γ−1

x

]
− δ6

)
∥∆kx(t)∥2

−
(

2bσr

γr

− δ7

)
∆kr(t)

2 −
(
2bσhλmin

[
Γ−1

h

]
− δ8

)
∥∆ρ(t)∥2
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+δ2b
2∥Ω21∥2vm

2 +

(
δ3b

2
∥∥z̄⋆

f (t)
∥∥2

+
b

2ρz

+
b2σ2

h

δ8

∥∥Γ−1
h

∥∥)
∥ρ∗∥2

+
b2σ2

δ5γ2
k∗2 +

b2σ2
x

δ6

∥∥Γ−1
x

∥∥2 ∥k∗
x∥2 +

b2σ2
r

δ7γ2
r

k∗2
r (39)

Here, by considering sufficiently small positive constants δ1, δ4, δ5, δ6, δ7 and δ8 such that

λmin [Qη] − δ1∥cη∥2 − δ4∥bT
η Pη∥2 > α2 > 0, 2bσ

γ
− δ5 > α3 > 0

2bσxλmin [Γ−1
x ] − δ6 > α4 > 0, 2bσr

γr
− δ7 > α5 > 0

2bσhλmin

[
Γ−1

h

]
− δ8 > α6 > 0

(40)

and sufficiently large ideal feedback gain k∗ such that

2bk∗ − 2a − 1

δ1

− 1

δ2

− 1

δ3

− 1

δ4

> α1 > 0 (41)

then V̇ (t) can be evaluated as

V̇ (t) ≤ −α1ēa(t)
2 − α2∥ηa(t)∥2 − α3∆k(t)2

−α4∥∆kx(t)∥2 − α5∆kr(t)
2 − α6∥∆ρ(t)∥ + R (42)

with

R =

(
δ3b

2
∥∥z̄⋆

f max

∥∥2
+

b

2ρz

+
b2σ2

h

δ8

∥∥Γ−1
h

∥∥)
∥ρ∗∥2

+
b2σ2

δ5γ2
k∗2 +

b2σ2
x

δ6

∥∥Γ−1
x

∥∥2 ∥k∗
x∥2 +

b2σ2
r

δ7γ2
r

k∗2
r (43)

From the above, V̇ (t) can be evaluated as

V̇ (t) ≤ −αV (t) + R, α = min{α1, α2, α3, α4, α5, α6} (44)

and it shows that all the signals in the control system are bounded.

7. Numerical Simulation. In this section the effectiveness of the proposed method is
shown.

Here, we consider the following system.

Gp(s) =
b1s + b2

s2 + a1s + a2

, a1 = 15, a2 = 5, b1 = 0.5, b2 = 1.0

The parameters b1 and b2 change during the operation as follows.

b1 = 0.5 − 0.006(t − 50), 50 ≤ t ≤ 140

b2 = 1.0 − 0.006(t − 30), 30 ≤ t ≤ 130

We assume that these are unknown.
The reference signal ym(t) is given by

ym(t) = sin
( π

60
t
)

(45)

Second order PFC is considered and the design parameters are set as follows.

G∗
a(s) =

1

s + 1
,

1

F (s)
=

1

s2 + 25s + 50

Γh = diag[10, 1.0, 10, 1.0], σh = 1.0 × 10−3, ρz = 100, γ = 1.0 × 103, σ = 1.0 × 10−3,

Γx = 5.0 × 102, σx = 1.0 × 10−3, γr = 5.0 × 102, σr = 1.0 × 10−3

Figure 3(a) shows the result by only SAC. It can be seen that the control system became
unstable after around 140 [sec]. This is because the plant became non-minimum phase
system.
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(a) Output by only SAC
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(b) Output by adaptive PFC

Figure 3. Simulation results by conventional method
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Figure 4. Simulation result by the proposed method

Figure 3(b) shows the result by adaptive P control with adaptive PFC [10]. It can be
seen that the output of augmented system shows good performance but the output of the
plant is getting worse. This is because the gain of the plant became lower.

Figure 4 shows the result by the proposed method. It can be seen that even if the plant
has changed during the operation, the proposed method can maintain a high control
performance.

8. Conclusions. In this paper, an SAC system with an adaptive PFC has been proposed.
The proposed method makes it possible to hold the ASPRness of the augmented system by
adjusting the parameters of a PFC adaptively. Therefore, even if the controlled system is
changing during the operation, SAC system can maintain the stability. The boundedness
of all the signals in the control system has also been analyzed. In addition, the effectiveness
of the proposed method has been confirmed through a numerical simulation. In the future
work, we will try to develop the method for nonlinear systems.
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