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Abstract. This paper studies a quadratic optimal control problem for uncertain swit-
ched linear systems with subsystems perturbed by human uncertainty which is neither like
randomness nor like fuzziness. The goal is to jointly design a deterministic switching law
and a continuous feedback to minimize the expectation of a quadratic cost function. A
two-stage algorithm is applied to handle such model. In the first stage, the minimum value
of the cost function and the optimal control are obtained under fixed switching instants,
and in the second stage, the mutation ant colony optimization (MACO) algorithm is used
to get the optimal switching instants. An example is shown to validate the method.
Keywords: Optimal control, Uncertain switched system, Equation of optimality, Linear
quadratic, MACO algorithm

1. Introduction. Optimal control of switched systems is a challenging problem that has
received much research attention in recent years [1-3]. Linear quadratic (LQ) control is
one of the most fundamental and widely used tools in many fields of modern real life.
In [3,4], the LQ model of switched systems is discussed. However, a majority of these
methods are based on deterministic models for subsystem dynamics.

However, indeterminacy is ubiquitous in realistic system models and the complexity of
the world makes the control systems we face uncertain in various forms such as randomness
and fuzziness. Nevertheless, lots of human uncertainty behaves neither like randomness
nor like fuzziness, such as oil field reserves, bridge strength, and enemy force. In order
to deal with these human uncertainty, an uncertainty theory was founded by Liu [5] in
2007, and refined in 2010 [6]. So far, the content of uncertainty theory has been developed
to a fairly complete system for modeling human uncertainty. Based on uncertain theory,
Zhu [7] introduced and dealt with the expected value model of uncertain optimal control
problem by using dynamic programming in 2010. Recently, Yan and Zhu [8, 9] studied
bang-bang control models with expected value criterion and optimistic value criterion
respectively for uncertain switched systems.

Also many practical LQ problems contain the human uncertainty which may affect the
running of systems. So to study LQ optimization models of uncertain switched system is
necessary. In this paper, we just introduce such uncertain model and focus on the solution
approaches of the problems where the order of the sequence of the active subsystems
is known. Our aim is to establish an optimal linear quadratic optimization model of
uncertain switched system and provide an efficient computational algorithm to solve this
optimal switching problem.
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The rest of the paper is organized as follows. In Section 2, some basic concepts are
reviewed. In Section 3, the LQ model of uncertain switched system with fixed switching
instants is formulated. In Section 4, two-stage algorithm is applied to handle such model.
In Section 5, the effectiveness of the proposed method is tested with a numerical example.
In Section 6, the conclusion is given.

2. Preliminary. For convenience, we give some useful concepts in uncertainty theory
[5, 6, 10]. Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element A ∈ L is called
an event. A set function M defined on the σ-algebra L is called an uncertain measure if
it satisfies (i) M(Γ) = 1; (ii) M(A) + M(Ac) = 1 for any event A; (iii) M(

∪∞
i=1 Ai) ≤∑∞

i=1 M(Ai) for every countable sequence of events Ai. The triplet (Γ,L,M) is called an
uncertainty space. An uncertain variable is a measurable function from an uncertainty
space (Γ,L,M) to the set R of real numbers, and an uncertain vector is a measurable
function from an uncertainty space to Rn. The uncertainty distribution Φ : R → [0, 1]
of an uncertain variable ξ is defined by Φ(x) = M{ξ ≤ x} for any real number x. The

expected value of an uncertain variable ξ is defined by E[ξ] =
∫ +∞
0

M{ξ ≥ r}dr −∫ 0

−∞ M{ξ ≤ r}dr provided that at least one of the two integrals is finite.
An uncertain process Ct is said to be a canonical process if (i) C0 = 0 and almost all

sample paths are Lipschitz continuous; (ii) Ct has stationary and independent increments;
(iii) every increment Cs+t − Cs is a normal uncertain variable with expected value 0 and
variance t2, denoted by Cs+t − Cs ∼ N (0, t) whose uncertainty distribution is Φ(x) =(
1 + exp

(
−πx√

3t

))−1

for x ∈ R. Suppose Ct is a canonical process, f and g are two given

functions. Then

dXt = f(t,Xt)dt + g(t,Xt)dCt (1)

is called an uncertain differential equation. A solution of (1) is an uncertain process Xt

that satisfies Xt = X0 +
∫ t

0
f(s,Xs)ds +

∫ t

0
g(s,Xs)dCs.

3. Problem Formulation.

3.1. Uncertain switched system. Considering an uncertain switched system consisting
of the following subsystems:

dXs = (Ai(s)Xs + Bi(s)us)ds + σ(s, us, Xs)dCs, s ∈ [0, T ]
X0 = x0, i ∈ I = {1, 2, · · · ,M} (2)

where Xs ∈ Rn is the state vector and us ∈ Rr is the decision vector in a domain
U , Ai : [0, T ] → Rn×n, Bi : [0, T ] → Rn×r are some twice continuously differentiable
functions for i ∈ I, Cs = (Cs1, Cs2, · · · , Csk)

τ , where Cs1, Cs2, · · · , Csk are independent
canonical processes.

An optimal control problem of such a system involves finding an optimal control u∗
t

and an optimal switching law such that a given cost function is minimized. A switching
law in [0, T ] for system (2) is defined as Λ = ((t0, i0), (t1, i1), · · · , (tK , iK)), where tk
(k = 0, 1, · · · , K) satisfying 0 = t0 ≤ t1 ≤ · · · ≤ tK ≤ tK+1 = T are the switching instants
and ik ∈ I for k = 0, 1, · · · , K. Here (tk, ik) indicates that at instants tk, the system
switches from subsystem ik−1 to ik. During the time interval [tk, tk+1) ([tK , T ] if k = K),
subsystem ik is active. Since many practical problems only involve optimizations in which
a prespecified order of active subsystems is given, for convenience, we assume subsystem
i is active in [ti−1, ti).
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3.2. LQ optimal control problem. In this paper, we consider a kind of special model
of uncertain switched systems with a quadratic objective function subject to some linear
uncertain differential equations. Then the following uncertain expected value LQ model
of uncertain switched systems is considered.

J(t, x) = min
ut

E

[∫ T

t

(
1

2
Xτ

s Q(t)Xs + Xτ
s V (t)us +

1

2
uτ

sR(t)us + M(t)Xs

+N(t)us + W (t)

)
ds +

1

2
Xτ

T QT XT + MT XT + LT

]
s.t. dXs = (Ai(s)Xs + Bi(s)us)ds + σ(s, us, Xs)dCs

s ∈ [ti−1, ti), i = 1, 2, · · · , K + 1
Xt = x

(3)

where T , x0 are given, Q(t) ∈ Rn×n, V (t) ∈ Rn×r, R(t) ∈ Rr×r, M(t) ∈ Rn, N(t) ∈ Rr,
W (t) ∈ R are functions of time t and QT , Q(t) ≥ 0, R(t) > 0. J(t, x) denotes the optimal
value obtained in [t, T ] with the condition that at time t we are in state Xt = x. The
aim to discuss this model is to find not only an optimal control u∗

t but also an optimal
switching law.

By the equation of optimality [11] to deal with the model (3), the following conclusion
can be obtained.

Theorem 3.1. Assume that J(t, x) be twice differentiable on [ti−1, ti)×Rn, then we have

−Jt(t, x) = min
ut

[
1
2
xτQ(t)x + xτV (t)ut + 1

2
uτ

t R(t)ut + M(t)x + N(t)ut + W (t)

+(Ai(t)x + Bi(t)ut)
τ∇xJ(t, x)]

(4)

where Jt(t, x) is the partial derivative of the function J(t, x) in t, and ∇xJ(t, x) is the
gradient of J(t, x) in x.

4. Two Stage Approach. In order to solve problem (3), we decompose it into two
stages. Stage (a) deals with conventional uncertain LQ problems which seek the minimum
value of J with respect to the switching instants. Stage (b) solves an optimization problem.

4.1. Stage (a). In this stage, we fix the switching instants t1, t2, · · · , tK and handle the
following model to find the optimal value.

J(0, x0, t1, · · · , tK)

= min
us

E

[∫ T

0

(
1
2
Xτ

s Q(t)Xs + Xτ
s V (t)us + 1

2
uτ

sR(t)us + M(t)Xs

+N(t)us + W (t)

)
ds +

1

2
Xτ

T QT XT + MT XT + LT

]
s.t. dXs = (Ai(s)Xs + Bi(s)us)ds + σ(s, us, Xs)dCs

s ∈ [ti−1, ti), i = 1, 2, · · · , K + 1
X0 = x0

(5)

Applying Equation (4) to model (5), we have the following conclusion.

Theorem 4.1. Assume that J(t, x) be twice differentiable on [ti−1, ti)×Rn (i = 1, 2, · · · ,
K + 1). Let Q(t), V (t), R(t), M(t), N(t), W (t), Ai(t), Bi(t), R−1(t) be continuous
bounded functions of t, and Q(t), QT ≥ 0, R(t) > 0. The optimal control of model (5)
when t ∈ [ti−1, ti) is that

u
(i)∗
t = −R−1(Bτ

i Pi(t) + V τ )x − R−1 (Bτ
i Sτ

i (t) + N τ ) (6)

for i = 1, 2, · · · , K + 1, where Pi(t) = P τ
i (t), Si(t) satisfy{

−Ṗi(t) = Q + Pi(t)Ai + Aτ
i Pi(t) − (Pi(t)Bi + V )R−1(Bτ

i Pi(t) + V τ )

PK+1(T ) = QT and Pi(ti) = Pi+1(ti) for i ≤ K
(7)
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and {
−Ṡi(t) = M + Si(t)Ai − (N + Si(t)Bi)R

−1(Bτ
i Pi(t) + V τ )

SK+1(T ) = M
T

and Si(ti) = Si+1(ti) for i ≤ K
(8)

The optimal value of model (5) is

J(0, x0, t1, · · · , tK) =
1

2
xτ

0P1(0)x0 + S1(0)x0 + L1(0) (9)

where Li(t), t ∈ [ti−1, ti) satisfies{
−L̇i(t) = W − 1

2
(Si(t)Bi + N)R−1(Bτ

i Sτ
i (t) + N τ )

LK+1(T ) = L
T

and Li(ti) = Li+1(ti) for i ≤ K
(10)

Proof: It follows from the equation of optimality (4) that

−Jt(t, x) = min
ut

[
1

2
xτQx + xτV ut +

1

2
uτ

t Rut + Mx + Nut + W

+(Aix + Biut)
τ∇xJ(t, x)

]
Let

L
(
u

(i)
t

)
=

1

2
xτQx + xτV u

(i)
t +

1

2
u

(i)τ
t Ru

(i)
t + Mx + Nu

(i)
t + W

+
(
Aix + Biu

(i)
t

)τ

∇xJ(t, x)

The optimal control u
(i)∗
t satisfies

∂L
(
u
(i)
t

)
∂u

(i)
t

= V τx + Ru
(i)
t + N τ + Bτ

i ∇xJ(t, x) = 0.

Since
∂2L(u

(i)
t )

∂2u
(i)
t

= R > 0, we have

u
(i)∗
t = −R−1(V τx + N τ + Bτ

i ∇xJ(t, x)), t ∈ [ti−1, ti) (11)

When t ∈ [tK , T ], according to (4), we have

−Jt(t, x) = min
ut

[
1

2
xτQx + xτV u

(K+1)
t +

1

2
u

(K+1)τ
t Ru

(K+1)
t + Mx + Nu

(K+1)
t + W

+
(
Aix + Biu

(K+1)
t

)τ

∇xJ(t, x)

]
(12)

Since J(T, xT ) = 1
2
Xτ

T QT XT + MT XT + LT , we guess

J(t, x) =
1

2
xτPK+1(t)x + SK+1(t)x + LK+1(t), t ∈ [tK , T ] (13)

and

PK+1(t) = P τ
K+1(t), PK+1(T ) = QT , SK+1(T ) = MT , LK+1(T ) = LT

So

∂J

∂t
=

1

2
xτ ṖK+1(t)x + ṠK+1(t)x + L̇K+1(t), ∇xJ(t, x) = PK+1(t)x + Sτ

K+1(t) (14)

Thus, it follows from (11) that

u
(K+1)∗
t = −R−1(Bτ

K+1PK+1(t) + V τ )x − R−1(Bτ
K+1S

τ
K+1(t) + N τ ) (15)
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Substituting (14) and (15) into (12) we have that

− 1

2
xτ ṖK+1(t)x − ṠK+1(t)x − L̇K+1(t)

=
1

2
xτ

[
Q + PK+1(t)AK+1 + Aτ

K+1PK+1(t)

−(PK+1(t)BK+1 + V )R−1(Bτ
K+1PK+1(t) + V τ )

]
x

+
[
SK+1(t)AK+1 − (N + SK+1(t)BK+1)R

−1(Bτ
K+1PK+1(t) + V τ ) + M

]
x

+

[
W − 1

2
(SK+1(t)BK+1 + N)R−1

(
Bτ

K+1S
τ
K+1(t) + N τ

)]
Therefore, we have

−ṖK+1(t) = Q + PK+1(t)AK+1 + Aτ
K+1PK+1(t)

−(PK+1(t)BK+1 + V )R−1(Bτ
K+1PK+1(t) + V τ )

PK+1(T ) = QT{
−ṠK+1(t) = M + SK+1(t)AK+1 − (N + SK+1(t)BK+1)R

−1(Bτ
K+1PK+1(t) + V τ )

SK+1(T ) = M
T

and {
−L̇K+1(t) = W − 1

2
(SK+1(t)BK+1 + N)R−1(Bτ

K+1S
τ
K+1(t) + N τ )

LK+1(T ) = L
T

By the same method as above procedure, we can get the conclusion.

4.2. Stage (b). According to Theorem 4.1, 2(K+1) Riccati matrix differential equations
have to be solved in order to solve the model (5). Then the optimal cost J(0, x0, t1, · · · , tK)
can be obtained by (9). Denote J̃(t1, · · · , tK) = J(0, x0, t1, · · · , tK). The next stage is to
solve an optimization problem min

0≤t1≤t2···≤tK≤T
J̃(t1, · · · , tK).

For model (5), we cannot obtain the analytical expressions of solutions according to
Theorem 4.1. However, most optimization algorithms need explicit forms of the first order
derivative of the objective functions. Being presented with such difficulties, evolutionary
meta heuristic algorithms may be a good choice to solve stage (b). A new intelligent algo-
rithm combining a mutation ant colony optimization algorithm and a simulated annealing
method (MACO) was designed by Zhu [12] to solve continuous optimization models. Since
the MACO was shown its superiority to some other evolutionary meta heuristic algorithms
in [12], it is employed to solve the optimization problem above.

5. An Example. Consider the following example of LQ models for uncertain switched
systems 

J(0, x0) = min
u(s)

E

[∫ 1

0

(
−X(s) − u(s) +

1

2
u2(s) + 1

)
ds − X2(1)

]
subsystem 1 : dX(s) = [u(s) − α1X(s)]ds + σX(s)dCs, s ∈ [0, t1)

subsystem 2 : dX(s) = [u(s) − α2X(s)]ds + σX(s)dCs, s ∈ [t1, t2)

subsystem 3 : dX(s) = [u(s) − α3X(s)]ds + σX(s)dCs, s ∈ [t2, 1]

X(0) = 1

Stage (a): Fix t1, t2 and formulate J̃(t1, t2) according to Theorem 4.1.
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The solutions of Riccati equations of (7) and (8) of this example are

P3(t) =
m3e

m3t

−em3t + n3

, S3(t) =
−2(m3 + 1)em3t − 2n3 + c3m3e

1
2
m3t

m3(n3 − em3t)

for i = 3, where m3 = 2α3, St3 = −1, n3 = (−St3 − α3)e
m3 , c3 =

(
4

m3
+ 1

)
e

1
2
m3 .

In addition, we have

P2(t) =
−m2St2e

m2t

St2e
m2t + n2

, S2(t) =
2St2(m2 + 1)em2t − 2n2 + c2m2e

1
2
m2t

m2(n2 + St2e
m2t)

for i = 2, where m2 = 2α2, St2 = 1
2
P3(t2), n2 = (−St2 − α2)e

m2t2 , S ′
t2

= S3(t2), c2 =(
−m2

2
S ′

t2
− 2St2 − 1 − 4St2

m2

)
e

1
2
m2t2 , and

P1(t) =
−m1St1e

m1t

St1e
m1t + n1

, S1(t) =
2St1(m1 + 1)em1t − 2n1 + c1m1e

1
2
m1t

m1(n1 + St1e
m1t)

for i = 1, where m1 = 2α1, St1 = 1
2
P2(t1), n1 = (−St1 − α1)e

m1t1 , S ′
t1

= S2(t1), c1 =

(−m1

2
S ′

t1
− 2St1 − 1 − 4St1

m1
)e

1
2
m1t1 .

According to Theorem 4.1, the optimal value is J̃(t1, t2) = 1
2
P1(0)+S1(0)+L1(0), where

L1(0) =

∫ t1

0

[
−1

2
S2

1(t) + S1(t) +
1

2

]
dt +

∫ t2

t1

[
−1

2
S2

2(t) + S2(t) +
1

2

]
dt

+

∫ 1

t2

[
−1

2
S2

3(t) + S3(t) +
1

2

]
dt

Stage (b): Find the optimal switching instant t∗1, t∗2 according to MACO algorithm.
Choose α1 = 1

3
, α2 = 1

4
, α3 = 1

2
. By applying MACO algorithm, we find the optimal

switching instant t∗1 = 0.303, t∗2 = 0.462. The optimal control is

u∗
t =



1 − 675.14e0.667t − 1197.62e0.333t − 502.78

167.68 + 135.07e0.667t
+

135.17e0.667tx(t)

251.39 + 202.5e0.667t
, t ∈ [0, 0.303)

1 +
10.44e0.5t − 19.79e0.25t + 8.14

2.04 − 1.74e0.5t
− 1.74e0.5tx(t)

4.07 − 3.48e0.5t
, t ∈ [0.303, 0.462)

1 +
4et − 8.24e0.5t + 2.718

1.359 − et
− etx(t)

1.359 − et
, t ∈ [0.462, 1]

6. Conclusion. An LQ optimization model for uncertain switched systems with sub-
systems perturbed by human uncertainty has been presented, together with a method
to design a control strategy and a switching law. Divide-and-conquer manner was bor-
rowed to deal with such model. In stage (a), we found the minimum value of the cost
function and the optimal control under fixed switching instants. In stage (b), MACO
algorithm was used to find the optimal switching instants. The example validated the
method well. LQ optimization models of uncertain switched systems for continuous time
were considered in this paper. However, many real-world switched systems are discrete-
time. Also, sometimes we need to discretize continuous-time switched systems in order to
solve our problems. Therefore, the research on problems of optimal control for uncertain
discrete-time switched systems is our future work.
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