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Abstract. This paper investigates a recursive least squares implementation for a Wien-
er system with an output error linear element and an invertible nonlinear part. It is
difficult to parameterize Wiener systems, and get a simple output-input representation
for Wiener systems with an output error linear element. This paper presents a new
linear-in-parameter output-input expression for a Wiener output error model by using the
auxiliary model idea and the invertible expression of the nonlinear part, and implements
a recursive least squares algorithm for the Wiener system. The simulation results show
that the proposed algorithm is effective.
Keywords: System identification, Wiener system, The auxiliary model, Least squares

1. Introduction. Block-oriented systems are popular in modeling of nonlinear systems
due to their simple and useful representation. The commonly used block-oriented nonlin-
ear structures are the Hammerstein structure and the Wiener structure [1-4]. The Ham-
merstein structure puts a linear element after a nonlinear element, and the Wiener struc-
ture is in a reverse arrangement. So the output-input expression of the Wiener systems
is more complex than that of the Hammerstein systems, and it is hard to parameterize
Wiener systems into a linear-in-parameter form to which the standard least squares or
stochastic gradient identification methods can be directly applied.

In order to solve the difficulty of parameterizing Wiener systems, some researchers in-
vestigated Wiener systems with a simple piecewise-linear nonlinearity. Figueroa et al.
proposed a least squares algorithm for a Wiener model with a Laguerre basis linear model
and a piecewise linear representation of the nonlinear static block [4]. Kozek and Sinanović
discussed a least squares algorithm for a Wiener system with a deterministic autoregres-
sive moving average linear model and a piecewise linear nonlinearity [5]. In addition,
Hagenblad et al. derived a maximum likelihood method for a controlled autoregressive
Wiener system [6]. Pelckmans discussed a minimal Lipschitz estimator applied to identi-
fication of a monotone finite impulse response Wiener system [7]. Tang et al. used step
signals and particle swarm optimization to identify a Wiener system [8]. Wang and Ding
presented a least squares based and a gradient based iterative identification for a Wiener
like nonlinear system [9].

The motivation of this paper is to find an effective method to estimate the parameters
of a Wiener system with a more complex nonlinear part than a piecewise linear nonlin-
earity. This paper focuses on a Wiener system with an output error linear element and
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Figure 1. The Wiener output error system

an invertible nonlinear part, as shown in Figure 1. The contributions of this paper lie in
the following.

• By the invertible expression of the nonlinear part and the virtual system idea, we
construct a virtual system expressed in a linear-in-parameter equation instead of a
bilinear parameter equation in [9].

• By the auxiliary model idea, we replace the unknown variable in the information
vector in the linear-in-parameter equation with the output of an auxiliary model.

• This paper presents a recursive least squares identification algorithm for the virtual
linear-in-parameter system.

The paper is organized as follows. Section 2 describes the system formulation related to
a Wiener system with an invertible nonlinear part. Section 3 constructs a new linear-in-
parameter output-input expression for the Wiener output error model, and implements a
recursive least squares algorithm for the Wiener system. Section 4 provides an illustrative
example. Finally, concluding remarks are given in Section 5.

2. Problem Formulation. The Weiner system with an output error linear part in Fig-
ure 1 can be expressed as

r(t) =
B(z)

A(z)
u(t) + v(t), (1)

y(t) = g[r(t)], (2)

where u(t) and y(t) are the system input and output, respectively; x(t) is the noise free
output of the linear block; r(t) is the true output with noises of the linear block; v(t) is
a stochastic white noise with zero mean and variance σ2; the linear block is an output
error model; A(z) and B(z) are polynomials in the unit backward shift operator z−1

(z−1y(t) = y(t− 1)), and defined by

A(z) := 1 + a1z
−1 + a2z

−2 + · · · + anaz
−na ,

B(z) := b1z
−1 + b2z

−2 + · · · + bnb
z−nb .

Assume that the orders na and nb are known and y(t) = 0, u(t) = 0, x(t) = 0, r(t) = 0
and v(t) = 0 for t 6 0. The nonlinear block is a basis function.

The output of the linear block can be expressed as

x(t) =
B(z)

A(z)
u(t). (3)

Then we can get

x(t) = −
na∑
i=1

aix(t− i) +

nb∑
j=1

bju(t− j),

r(t) = −
na∑
i=1

aix(t− i) +

nb∑
j=1

bju(t− j) + v(t). (4)
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Assume that the output nonlinearity g is considered to be invertible, and g−1 can be
written as a linear combination of basis functions gl:

r(t) = g−1[y(t)] =

p∑
l=1

dlgl[y(t)]. (5)

3. The Recursive Least Squares Algorithm. Notice that parameterization of the
linear block in (1) and the nonlinear block in (5) is not unique. Without loss of generality,
the first coefficient of the nonlinear part is unity, i.e., d1 = 1 [10].

Combining Equations (4) and (5) gives

g1[y(t)] +

p∑
l=2

dlgl[y(t)] = −
na∑
i=1

aix(t− i) +

nb∑
j=1

bju(t− j) + v(t). (6)

Define

ψ(t) = [−g2[y(t)], · · · ,−gp[y(t)],−x(t− 1), · · · ,−x(t− na), u(t− 1), · · · , u(t− nb)]T ∈ Rp+na+nb−1,

ϑ = [d2, · · · , dp, a1, · · · , ana , b1, · · · , bnb
]T ∈ Rp+na+nb−1,

φ(t) = [−x(t− 1), · · · ,−x(t− na), u(t− 1), · · · , u(t− nb)]
T ∈ Rna+nb ,

θ = [a1, a2, · · · , ana , b1, b2, · · · , bnb
]T ∈ Rna+nb .

Then we can construct a virtual system in the following linear-in-parameter expression

g1[y(t)] = −
p∑

l=2

dlgl[y(t)] −
na∑
i=1

aix(t− i) +

nb∑
j=1

bju(t− j) + v(t),

=: ψT (t)ϑ+ v(t), (7)

and we also have
x(t) =: φT (t)θ. (8)

The information vectors ψ(t) and φ(t) on the right-hand sides of (7) and (8) contain
unknown internal variables x(t− i), here we use the auxiliary model idea, to replace the
unknown x(t − i) with the outputs xa(t − i) of an auxiliary model [11], and it can be
expressed as

xa(t) = φT
a (t)θa. (9)

We take φ̂(t) to be the information vector φa(t) of the auxiliary model, and θ̂(t) to be the
parameter vector θa of the auxiliary model, and we have

xa(t) = φ̂T (t)θ̂(t). (10)

Thus the estimates ψ̂(t) and φ̂(t) of ψ(t) and φ(t) can be written as

ψ̂(t) = [−g2[y(t)], · · · ,−gp[y(t)],−xa(t− 1), · · · ,−xa(t− na), u(t− 1), · · · , u(t− nb)]
T ,

φ̂(t) = [−xa(t− 1), · · · ,−xa(t− na), u(t− 1), · · · , u(t− nb)]
T .

Suppose the data length L≫ p+ na + nb. Define a quadratic cost function,

J(θ) =
L∑

t=1

[
g1[y(t)] − ψT (t)ϑ

]2
. (11)

Minimizing the cost function, and replacing ψ(t) with ψ̂(t) and φ(t) with φ̂(t), we can
obtain the following recursive least squares algorithm of estimating ϑ for the Wiener
output error system (the W-RLS algorithm for short) [12]:

ϑ̂(t) = ϑ̂(t− 1) + L(t)
[
g1[y(t)] − ψ̂T (t)ϑ̂(t− 1)

]
, (12)

θ̂(t) = ϑ̂(t)(p : p+ na + nb − 1), (13)
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L(t) = P (t− 1)ψ̂(t)
[
1 + ψ̂T (t)P (t− 1)ψ̂(t)

]−1

, (14)

P (t) =
[
I − L(t)ψ̂T (t)

]
P (t− 1), P (0) = p0I, (15)

ψ̂(t) = [−g2[y(t)], · · · ,−gp[y(t)],−xa(t−1), · · · ,−xa(t−na), u(t−1), · · · , u(t−nb)]
T , (16)

φ̂(t) = [−xa(t−1), · · · ,−xa(t−na), u(t−1), · · · , u(t−nb)]
T , (17)

xa(t) = φ̂T (t)θ̂(t), (18)

ϑ̂(t) =
[
d̂2(t), · · · , d̂p(t), â1(t), · · · , âna(t), b̂1(t), · · · , b̂nb

(t)
]T

, (19)

θ̂(t) =
[
â1(t), â2(t), · · · , âna(t), b̂1(t), b̂2(t), · · · , b̂nb

(t)
]T

. (20)

The procedures of computing ϑ̂(t) in the W-RLS algorithm are listed as follows.

1. Let t = 1, ϑ̂(0) = 1p+na+nc−1/p0, P (0) = p0I, xa(i) = 1/p0, u(i) = 0, y(i) = 0 as
i 6 0, p0 = 102.

2. Collect the data u(t) and y(t), and form ψ̂(t) and φ̂(t) by (16) and (17), respectively.
3. Compute L(t) and P (t) by (14) and (15), respectively; and compute gl[y(t)].

4. Update the parameter estimates ϑ̂(t) and θ̂(t) by (12) and (13).
5. Compute xa(t) by (18).
6. Increase t by 1 and go to Step 2.

The flowchart of computing the parameter estimate ϑ̂(t) by the W-RLS algorithm in
(12)-(20) is shown in Figure 2.

Figure 2. The flowchart of computing the W-RLS estimate ϑ̂(t)

4. Example. Consider the following Wiener system with the linear block,

x(t) =
B(z)

A(z)
u(t) + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 + 0.20z−1 + 0.35z−2,

B(z) = b1z
−1 + b2z

−2 = 1 + 0.15z−1 + 0.45z−2,
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and the inversion of the nonlinear block,

r(t) = y(t) − 0.18y2(t).

The input {u(t)} is taken as an uncorrelated persistent excitation signal sequence with
zero mean and unit variance, and {v(t)} as a white noise sequence with zero mean and
variance σ2 = 0.052 and σ2 = 0.102, respectively. Applying the W-RLS algorithm to
estimate the parameters of this system, the parameter estimates and their errors are
shown in Table 1, and the estimation errors δ := ∥ϑ̂(t) − ϑ∥/∥ϑ∥ are shown in Figure 3.

Table 1. The parameter estimates and errors with different σ2

σ2 t d2 a1 a2 b1 b2 δ (%)

0.052

100 −0.09481 0.1866 0.2744 0.1248 0.4100 19.1468

200 −0.1496 0.1939 0.3219 0.1425 0.4349 6.9545

500 −0.1720 0.2062 0.3429 0.1454 0.4420 2.3776

1000 −0.1756 0.2056 0.3536 0.1485 0.4466 1.3662

1500 −0.1796 0.2021 0.3519 0.1496 0.4462 0.7340

2000 −0.1809 0.2034 0.3507 0.1494 0.4468 0.7484

0.102

100 −0.1123 0.1842 0.2665 0.1217 0.4088 18.4628

200 −0.1700 0.1892 0.3072 0.1424 0.4378 7.3377

500 −0.1956 0.2103 0.3349 0.1427 0.4404 4.1589

1000 −0.1915 0.2094 0.3550 0.1474 0.4459 2.5257

1500 −0.1956 0.2030 0.3511 0.1494 0.4439 2.6269

2000 −0.1963 0.2058 0.3489 0.1488 0.4444 2.8188

True values −0.1800 0.2000 0.3500 0.1500 0.4500
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Figure 3. The estimation errors δ versus t with different σ2

From Table 1 and Figure 3, we can draw the following conclusions.

• The parameter estimates given by the W-RLS algorithm converge to their true values
as the noise variance becomes small.

• The parameter estimation errors given by the W-RLS algorithm become generally
smaller and go to zero with the data length t increasing. This shows that the proposed
algorithm is effective.
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5. Conclusion. Due to the Wiener structure being a static nonlinear block following a
linear dynamic block, it is difficult to get a simple output-input representation for the
Wiener system with an output error linear element. In this paper, a Wiener output error
system is parameterized as a linear-in-parameter form by using the auxiliary model idea
and the invertible expression of the nonlinear part, and a recursive least squares algo-
rithm is presented for the Wiener system. The simulation results show that the proposed
algorithm is effective. For further research, we would study the simplified output-input
representation and the simplified identification method for multivariable Wiener systems
by using the auxiliary model idea.
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