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Abstract. Dangerous phenomena for aircraft’s post-stall maneuvering are studied based
on bifurcation theory. Firstly, equilibrium and bifurcation surfaces of an aircraft are iden-
tified in the state-control space based on continuation algorithm. Additionally, dangerous
phenomena, such as spin, are analyzed and predicted by using bifurcation theory. Fi-
nally, the motion trajectories of aircraft are used to demonstrate the effectiveness of the
predictions via the analysis of bifurcation phenomena.
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1. Introduction. Bifurcation is an important physical phenomenon for a nonlinear dy-
namic system. Emergence of bifurcation often accompanies with some special physical
phenomena [1-3]. For an aircraft, bifurcation usually appears when the aircraft flies in ma-
neuvering flight regime which means the appearance of dangerous phenomena, especially
in post-stall maneuvering.

Post-stall maneuverability is one of the important characters of modern advanced mil-
itary aircraft [4,5]. The stability of flight at high angle of attack is a key problem which
needs to be solved in post-stall maneuver, because the aircraft may undergo vortex flow,
breakdown vortex flow and fully separated flow, meanwhile the control surfaces lose much
of their efficiency due to low dynamic pressure. All of these may lead to some unexpected
dangerous nonlinear bifurcation phenomena, such as wing rock, deep stall and spin [6,7].
In addition, with the existence of aerodynamics and inertial coupling, the stability of the
aircraft will become more complex. Therefore, it is very dangerous for the safeties of pilot
and aircraft in post-stall maneuvering. As a result, studying flight dynamics and devel-
oping predication techniques of dangerous regime at high angle of attack are necessary
for safety, which also play an important role throughout the entire process of aircraft
development [8,9].

Due to the fact that the aircraft is an inherent non-linear system, especially for the
condition at high angle of attack, non-linear bifurcation phenomena are corresponding to
several important aircraft maneuvers, including roll-coupling, stall and spin. Therefore,
the linearized equations of aircraft motion cannot be used to accurately analyze these non-
linear phenomena. The bifurcation theory was presented by Mehra for analyzing aircraft
stability and non-linear bifurcation phenomenon of aircraft at high angle of attack [10].
With this approach, the aircraft global stability with respect to system states and control
parameters which is called bifurcation diagram is presented. Based on this diagram,
different dangerous phenomena including spin of aircraft post-stall maneuvering can be
predicted. From then on, rich achievements [11-16] were achieved based on this approach.

As discussed above, the global stability and bifurcation phenomena of an aircraft’s
post-stall maneuvering process are analyzed in this paper. Analytic results indicate some
special physical phenomena, such as spin, may occur at high angle of attack. Based on
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the analysis, a prediction method of the nonlinear dangerous phenomena is developed. In
order to verify the accuracy of analysis, the time responses and the motion trajectories of
the aircraft are given. The purpose of analysis is to provide theory basis for the aircraft
recovering from these dangerous bifurcation phenomena.

The remainder of this paper is organized as follows. Section 2 presents the system and
problem description. Section 3 describes the calculation of bifurcation diagram. Bifur-
cation analysis and spin prediction are presented in Section 4. Section 5 concludes the
papers.

2. Description of the Problem. According to the conditions mentioned in Remark
2.1 and Remark 2.2, the aircraft model can be described as the following equations:
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where V is the aircraft speed, α is the angle of attack, β is the angle of sideslip, m is the
aircraft mass, q̄ is the dynamic pressure, ρ is the air density, S is the wing reference area, b
is the wing span, g is the gravitational acceleration, c is the mean aerodynamic chord of the
wing, p, q and r are the body-axis angular rates, Ix, Iy, Iz and Ixz are the moments of iner-
tia, Cx(α, β, δe, q), Cy(α, β, δe, δa, δr, p, r) and Cz(α, β, δe, δa, δr, p, r) are the aerodynamic
force coefficients, and Cl(α, β, δe, δa, δr, p, r), Cm(α, β, δe, q) and Cn(α, β, δe, δa, δr, p, r) are
the aerodynamic moment coefficients. δe is elevator deflection, δa is aileron deflection and
δr is rudder deflection.

Remark 2.1. The thrust force T can be neglected due to the fact that the velocity V is
invariant when the aircraft flies at high angle of attack α.

Remark 2.2. Similarly, gravity force mg has small influence on bifurcation results; thus,
gravity force mg can be also neglected.

3. Calculation of Equilibrium Points. Without loss of generality, the aircraft dy-
namic system can be rewritten as the following nonlinear differential equation:

Ẋ = F (X,U) (6)

where X = [α, β, p, q, r]T is the state vector, and U = [δe, δa, δr]
T is the control vector.

When

Ẋ = F (X, U)|(Xe,Ue) = 0 (7)

then (Xe, Ue) is called equilibrium point of system (6).
According to the bifurcation theory [17] and Remark 3.1, the system stability will

change with the variation of control parameters of system (6), and even result in bifur-
cation phenomena, which indicate the sudden-changes of dynamical behavior. Especially
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for system (6), some special bifurcation phenomena, such as spin, deep stall and wing
rock, may occur when the aircraft flies at high angle of attack α.

In order to study the bifurcation phenomena of system (6), global stability is studied
firstly based on continuation algorithm and bifurcation theory, by which, steady states,
and different types of bifurcation points can be calculated. With the calculation results,
diagram of bifurcation and global steady-state distribution are presented, which is also
called equilibrium and bifurcation surfaces.

Remark 3.1. For the bifurcation analysis and continuation, system (6) is assumed to be
smooth.

Remark 3.2. From Equation (6), the system has three control surfaces, δe, δa and δr.
However, the calculation step based on continuation algorithm can only take one surface
as control variable and fix the other control surfaces as constants. So here, δa is taken as
control variable and δe and δr are fixed as constants.

Remark 3.3. To calculate the equilibrium surfaces, the algorithm needs to start from an
equilibrium state (X0, U0).

The steps of calculating equilibrium surfaces are shown as follows.
Step 1: Initialization

According to implicit function theorem and Remark 3.1, the steady states X of system
(6) are continuous function of the control variable δa, and δa ∈ [δa0, δan], which has n + 1
discretization points [δa0, δa1, . . . , δan]. Thus, the corresponding solution of system (6) is
[X(δa0), X(δa1), . . . , X(δan)]. For convenience, take [X0, X1, . . . , Xn] = [X(δa0), X(δa1),
. . . , X(δan)]. (X0, U0) is considered as initial equilibrium value, which satisfies the follow-
ing equation:

Ẋ = F (X, U)|(X0,U0) = 0 (8)

Step 2: Calculating new equilibrium point
Define:

X1(0) = X0 (9)

According to the method of Newton-Raphsond, there is:
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where k = [0, 1, . . . ,m] is the number of iterations.
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where [F1, F2, F3, F4, F5]
T =

[
α̇, β̇, ṗ, q̇, ṙ

]T

. When the iteration ends, it can be obtained

that:

X1 = X1(m) (14)
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and then X1 is the new equilibrium point.
Step 3: Calculating the eigenvalues of Jacobian matrix

According to Step 2, Jacobian matrix J at the new equilibrium point X1 is given as
follows:

J =
∂F

∂X

∣∣∣
X=X1

(15)

Denote λ(J) = [λ1, λ2, λ3, λ4, λ5] as the eigenvalues of J at new equilibrium point X1.
Step 4: Calculating all equilibrium points

Denoting X1 as new initial value for computing next equilibrium point X2, and repeat-
ing the above steps until Xn, all equilibrium points can be obtained. Then the system’s
equilibrium and bifurcation surfaces are achieved. However, during the process of calcu-
lation, bifurcation points may lead to the end of the calculation. How to determine the
locations and types of the bifurcation points can refer to [17,18].

Remark 3.4. The above steps only chose δa as control variable, if taking δe and δr as
variables, it has similar steps.

4. Analysis of Bifurcation and System Stability.

4.1. Bifurcation analysis. The aerodynamics model of aircraft in this paper is based
on the wind-tunnel data from NASA [19]. Because the aerodynamic coefficients and the
thrust force are usually defined as tabular functions of the motion parameters and control
inputs, smooth curve fitting for tabular functions is necessary. Generally, cubic spline
function is used to interpolate values for tabulate data that are obtained from wind
tunnel tests approximately.

By analysis, it can be found that the equilibrium and bifurcation surfaces are mainly
related to δa. So here, only bifurcation diagrams about δa are considered. The system
parameters are given as V = 60m/s, H = 3000m.

Taking δa as control variable, the calculation result of equilibrium and bifurcation
surfaces with δa is shown in Figure 1.

Figure 1 shows the equilibrium surfaces and bifurcation points of state variables α and
β versus δa. In Figure 1, the blue thin lines represent stable equilibrium branches, which
indicate the eigenvalues of equilibrium point in these branches are in the left-half complex
plane. The red thick lines represent unstable equilibrium branches, which means that at
least one of the eigenvalues in these branches crosses the imaginary axis. ‘•’ represents
limit point (LP) or saddle-node bifurcation point, which means a real eigenvalue crosses
the left-half plane to the right-half plane at a specific parameter value of δa and indicates
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a sudden change of dynamical behavior. ‘⋆’ represents hopf bifurcation (HB), which
indicates a pair of complex conjugate eigenvalues cross the imaginary axis and may lead
to very complicated dynamical behavior.

4.2. Prediction of bifurcation phenomena. Based on Section 4.1, it can be known
that system (6) may be stable or unstable due to the existence of bifurcation points, which
can lead to a curious dangerous phenomenon. Without loss of generality, only dangerous
bifurcation phenomena spin is analyzed. Spin is a special bifurcation phenomenon of air-
craft at high angle of attack, which causes the aircraft’s motion trajectory like a downward
spiral and the aircraft rotates around three body axes. Based on the analysis of Figure 1,
the time responses of longitudinal-directional variable q and lateral-directional variables
p, r indicate the aircraft’s rotation around body axes in Figure 2, where the curves of
state response in Figure 2(A) are finite amplitude oscillations, and those in Figure 2(B)
are divergent oscillations. We can predict the blue branch in Figure 1 is a stable spin
branch and the red is an unstable spin branch possibly. In order to verify the prediction,
the motion trajectory of the aircraft is shown in Figures 3(A) and 3(B). Figure 3(A) in-
dicates the motion trajectory is a regular spiral which represents stable spin and Figure
3(B) is irregular which represents unstable spin.
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5. Conclusion. The main aim of this work is to analyze the dangerous phenomena in
post-stall maneuvering. Based on bifurcation and continuation algorithm, the non-linear
flight dynamical phenomena, such as spin, are studied and a spin prediction method is
developed. According to the prediction results, the bifurcation phenomena may occur
when the aircraft flies at high angle of attack, which leads to dangerous phenomena, such
as spin. The research results provide important theoretic significance to ensure the safety
of aircraft when it flies at high angle of attack. Future work will look into designing
aircraft maneuvers and control algorithm at high angle of attack based on this approach.

Acknowledgment. This paper is supported by National Natural Science Foundation of
China (Grant No. 61374212 and No. 61304099).

REFERENCES

[1] L. Zhou, Y. Chen and F. Chen, Bifurcation and chaos of a new 3D quadratic system, ICIC Express
Letters, vol.4, no.6(B), pp.2481-2488, 2010.

[2] E. E. Meyer, Continuation and bifurcation in linear flutter equations, AIAA Journal, vol.53, no.4,
pp.1-3, 2015.

[3] W. Xiang, Equilibrium points and bifurcation control for Lorenz-Stenflo system, ICIC Express Let-
ters, vol.3, no.1, pp.61-66, 2009.

[4] W. Y. Zhang and M. B. Tong, Status and trends of the post stall maneuvers, Aeronautical Science
and Technology, vol.18, no.6, pp.18-21, 2006.

[5] S. Y. Liu and Y. B. Dong, The post stall maneuver’s effect on air combat performance, Journal of
Jilin Teachers Institute of Engineering and Technology, vol.28, no.8, pp.70-72, 2012.

[6] Y. L. Chen, Aircraft’s Analysis and Control of Nonlinear Dynamic Characteristics at High Angle
of Attack, Ph.D. Thesis, College of Aerospace Engineering, Nanjing University of Aeronautics and
Astronautics, 2007.

[7] Y. F. Liu, The prediction of spin through all process of the aircraft development, Experiments and
Measurements in Fluid Mechanics, vol.13, no.4, pp.32-35, 1999.

[8] R. Weissman, Status of design criteria for predicting departure characteristics and spin susceptibility,
Journal of Aircraft, vol.12, no.12, pp.989-993, 1975.

[9] W. J. Bihrle and B. Barnhart, Spin prediction techniques, Journal of Aircraft, vol.20, no.2, pp.97-101,
1983.

[10] R. K. Mehra, Global Stability and Control Analysis of Aircraft at High Angles of Attack, AD-A051850,
1978.

[11] D. Rezgui, M. H. Lowenberg and M. Jones, Continuation and bifurcation analysis in helicopter
aeroelastic stability problem, Journal of Guidance Control and Dynamics, vol.37, no.3, pp.889-897,
2014.

[12] A. K. Khatri, J. Singh and N. K. Sinha, Aircraft maneuver design using bifurcation analysis and
sliding mode control techniques, Journal of Guidance Control and Dynamics, vol.35, no.5, pp.1435-
1449, 2012.

[13] Q. Xin and Z. Shi, Bifurcation analysis and stability design for aircraft longitudinal motion with
high angle of attack, Chinese Journal of Aeronautics, vol.28, no.1, pp.250-259, 2015.

[14] J. Cai, H. Nie, M. Zhang et al., Effect of dual co-rotation wheels configuration on aircraft shimmy,
Journal of Vibroengineering, vol.17, no.8, pp.4421-4431, 2015.

[15] S. J. Gill, M. H. Lowenberg, S. A. Neild et al., Impact of controller delays on the nonlinear of
remotely piloted aircraft, Journal of Guidance Control and Dynamics, pp.1-9, 2015.

[16] A. A. Paranjape and N. Ananthkrishnan, Criterion for aircraft spin susceptibility, Journal of Aircraft,
vol.47, no.5, pp.1804-1807, 2010.

[17] H. Y. Hu, Applied Nonliear Dynamics, Aviation Industry Press, 2002.
[18] A. Dhooge, W. Govaerts and Y. A. Kuznetsov, Matcon: A Matlab package for numerical bifurcation

analysis of ODEs, ACM Trans. Mathematical Software, vol.29, no.2, pp.141-164, 2003.
[19] L. T. Nguyen et al., Simulator Study of Stall/Post-stall Characteristics of a Fighter Airplane with

Relaxed Longitudinal Static Stability, NASA TP-1538, 1979.


