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Abstract. When the transmission time is considered as unavailable, a semidefinite pro-
gramming (SDP) algorithm is proposed for time of arrival (TOA) based multiple source
localization by relaxing the model into the SDP convex optimization problem. The pro-
posed SDP problem can be solved with interior point methods which are self initialized
and require no initialization compared with the conventional maximum likelihood (ML)
estimator. The Cramér-Rao Lower Bound (CRLB) for this problem is then given for
comparison. The simulations show that the SDP algorithm provides robust solutions for
the joint estimates of source locations and transmission time.
Keywords: Wireless sensor networks, Localization, Semidefinite programming, Time of
arrival, Ship model self-propulsion

1. Introduction. Wireless sensor networks (WSNs) have been emerging as attractive
technologies with interesting applications such as medical, environmental and military
monitoring. Usually, WSNs use a large number of sensor nodes able to communicate
together in wireless mode and collaborate to provide information for common missions
including the test of ship model self-propulsion. To make the data collected from sensor
nodes meaningful, it often requires related locations of sensor nodes [1]. The accuracy
performance of ship model location awareness is also the key technology problem in the
test. It is difficult to locate the ship due to the small scale and high velocity model.
Global positioning system (GPS) is the most important technology to provide location
awareness around the globe through a constellation of at least 24 satellites. However, the
effectiveness of GPS is limited at each low-cost and tiny sensor node for its huge volume,
energy consumption and hardware cost.

Generally, in WSNs, there are some anchor nodes with known position, while the posi-
tions of some source nodes are unknown. Then the locations of source nodes are estimated
by using the anchor nodes and the corresponding distance measurements between the sen-
sor nodes. These measurements may include time of arrival (TOA) [2], time difference
of arrival (TDOA) [3], angle of arrival (AOA) and received signal strength (RSS) [4].
Among the different types of measurements, TOA measurements are relatively common
in modern sensor networks under the collaborative nature of the sensor nodes.

There are a number of estimation algorithms which have been proposed for source lo-
calization over the past years. The well-known maximum likelihood (ML) estimator can
achieve excellent accuracy performance at sufficiently small noise which is assumed to be
Gaussian. However, the numerical solution of ML estimator needs the initial points or may
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suffer from local minima and even divergence problems. To overcome the shortcomings of
the ML estimator, linear estimator and convex optimization method are proposed by using
some approximations and relaxations [5]. However, the performance of the linear estima-
tor is worse due to the singularity especially when the noises are enough large. Another
alternative method for the ML convergence problem is convex optimization techniques,
including semidefinite programming (SDP) [6, 7] and second order cone programming
(SOCP) [8]. By relaxing the localization model into convex optimization problem, the
SDP and SOCP algorithms provide robust solutions for source location estimates.

In the TOA-based localization model, source node transmits a packet including known
preamble and transmission time. Each sensor only needs to identify the known preamble
to record its arrival time. The propagation time is obtained by subtracting the trans-
mission time from the arrival time and directly used to estimate the source locations.
However, the transmission time is not always available due to the network attack or
clock offset. One way to tackle this problem is to exploit the time difference of arrival
(TDOA) which eliminates the transmission time. Although the dependence on the initial
transmission time is eliminated by TDOA, the measurement subtraction for computing
TDOA strengthens the noise and usually leads to degraded performance. Assuming the
start transmission time as unavailable, the authors in [9] proposed second order cone re-
laxation for conventional single source localization. Concurrently active multiple source
nodes substantially complicate the problem, so the joint estimation of the transmission
time and multiple source locations is proposed by using the linear programming (LP)
relaxation and sensible approximations [10]. However, the solutions of the LP technique
also need the initial points and cannot ensure the global convergence.

To overcome the shortcoming of LP technique, an SDP algorithm is proposed for TOA-
based multiple source localization in this paper. The transmission time and source lo-
cations are jointly estimated by relaxing the localization model into SDP convex opti-
mization problem. For arbitrary symmetric matrices A, A ≽ 0 means that A is positive
semidefinite. ∥∗∥ denotes ℓ2 norm. [A]i,j denotes the the element at the ith row and jth
column of matrix A.

2. Problem Specification. Assume that M+N sensor nodes including M anchor nodes
and N source nodes are deployed in a 2-dimensional geographical region. Denote the
positions of all source nodes by xi = [xi yi]

T , i = 1, 2, . . . , M . The positions of anchor
nodes are denoted by aj = [xj yj]

T , j = M + 1,M + 2, . . . , M + N and known as these
nodes may be positioned or the nodes may have GPS. The localization goal is to determine
the location of the other M source nodes (i.e., estimate x1,x2, . . . ,xM). The sensor nodes
receive the signal transmitted by the source nodes and detect the time of arrival. The
time of arrival measurement bi,j at sensor node j can be easily modeled as

bi,j = ti,j + τi + ni,j i ∈ S, j ∈ Ei (1)

where S = {i|i = 1, 2, . . . , M}, Ei represents the set of all sensor nodes connected to
source node i, j ∈ Ei means that sensor node j can be connected to source node i, τi is
the unknown time instant at which source node i transmits the signal to be measured,
ni,j is the additive measurement noise with zero mean and variance δ2

i,j, ti,j is the true
propagation time which can also be formulated as{

ti,j =
∥xi−aj∥

c
i ∈ S, j ∈ Ai

ti,j =
∥xi−xj∥

c
i ∈ S, j ∈ Bi

(2)

where Ai denotes the set of all anchor nodes connected to the source node i, Bi denotes
the set of all source nodes connected to the source node i, Ei = Ai ∪ Bi, c is the speed of
light, and ∥ · ∥ denotes the Euclidean norm. In the proposed localization model, the start
transmission time τi is assumed to be unknown and required to be estimated along with
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the source locations xi, so there are in total 3M unknown parameters, which are defined
as

τ = [τ1 τ2 . . . τM ]T (3)

X = [x1 x2 . . . xM ] (4)

where τ ∈ RM×1, X ∈ R2×M . Since the noise ni,j is Gaussian, the well known ML
estimator of the proposed model is simply obtained by the following minimization problem

min
X,τ

∑
i∈S

∑
j∈Ei

1

δ2
i,j

(bi,j − ti,j − τi)
2

s.t. ti,j =
∥xi − aj∥

c
i ∈ S, j ∈ Ai

ti,j =
∥xi − xj∥

c
i ∈ S, j ∈ Bi (5)

The optimization problem in (5) is highly nonlinear and nonconvex and solved by
the iterative numerical methods, which rely on the initial point. If the initial point is
not sufficiently close to the global minimum, the numerical methods may converge to a
local minimum or a saddle point causing a large estimation error. To ensure the global
convergence, an SDP algorithm is proposed for TOA-based multiple source localization
in the following.

3. Semidefinite Programming Algorithm. K = |Ei, i ∈ S| denotes the total link
number of all source nodes in the network. To obtain an SDP form for the proposed
model, the cost function of the ML estimator is firstly formulated as a linear function. By
stacking (1) in an ascending order of i and j, we produce the new TOA measurement vector
b = [bi,j|i ∈ S, j ∈ Ei]

T , the propagation time vector t = [ti,j|i ∈ S, j ∈ Ei]
T , the noise

vector n = [ni,j|i ∈ S, j ∈ Ei]
T and the transmit time vector τ = [τi|i = 1, 2, . . . , M ]T .

b ∈ RK×1, t ∈ RK×1, n ∈ RK×1 and τ ∈ RM×1. So the matrix form of (1) is rewritten as

b = IKt + Fτ + n (6)

where IK denotes the K × K identity matrix, F is a K × M with 1 at the ith column,
the row of corresponding measurement Ti,j and 0’s elsewhere. Defining a new unknown

vector h =
[
tT τT

]T
, (6) is rewritten as

b = Ah + n (7)

where A = [IK ;F]T , A ∈ RK×(K+M), h ∈ R(K+M)×1. So the cost function of the ML
estimator in (5) can be alternatively written as

Tr
{
Σ(Ah − b)T (Aφ − b)

}
= Tr

{
Σ

(
ATHA − 2AThb + bTb

)}
(8)

where Σ = diag
{

1
δ2
i,j
|i ∈ S, j ∈ Ei

}
, H = hhT . The diagonal elements of the matrix H

are denoted as [H]p,p, which is rewritten as
[H]p,p =

[
aj

−ei

]T

Z

[
aj

−ei

]
i ∈ S, j ∈ Ai

[H]p,p =

[
02

ei − ej

]T

Z

[
02

ei − ej

]
i ∈ S, j ∈ Bi

(9)

where p = 1, 2, . . . , K, ei is an M × 1 column vector with 1 at the ith entry and 0’s
elsewhere, 02 is a 2 × 1 zero column vector

Z =

[
I2 X

XT Y

]
(10)
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where Y = XTX. Then the cost function of the ML estimator in (5) is rewritten as

min
X,h,H,τ

Tr
{
Σ

(
ATHA − 2AThb

)}
s.t. [H]p,p =

[
aj

−ei

]T

Z

[
aj

−ei

]
i ∈ S, j ∈ Ai

[H]p,p =

[
02

ei − ej

]T

Z

[
02

ei − ej

]
i ∈ S, j ∈ Bi

Z =

[
I2 X
XT Y

]
Y = XTX, H = hhT (11)

where the constant term bTb is removed from the cost function. It is noted that the cost
function of (11) is linear with the variables of H and h. However, the constraints in (11)
make the problem nonconvex. To obtain the convex SDP form, we relax Y = XTX as
Y ≽ XTX. So (10) is reformulated as

Z =

[
I2 X

XT Y

]
≽ 0M+2 (12)

where 0M+2 denotes the M + 2 by M + 2 zero matrix. Similarly H = hhT is relaxed as
the following [

H h
hT 1

]
≽ 0K+M+1 (13)

The above relaxations of the constraints degrade the performance of the source location
estimates, but the convex SDP form is obtained. Using the relaxations, we rewrite the
optimization problem of (11) as the SDP form

min
X,h,H,τ

Tr
{
Σ

(
ATHA − 2AThb

)}
s.t. [H]p,p =

[
aj

−ei

]T

Z

[
aj

−ei

]
i ∈ S, j ∈ Ai

[H]p,p =

[
02

ei − ej

]T

Z

[
02

ei − ej

]
i ∈ S, j ∈ Bi

Z ≽ 0M+2[
H h
hT 1

]
≽ 0K+M+1 (14)

The SDP optimization problem of (14) is convex and can be solved with well known
algorithms such as interior point methods which are self initialized and requires no ini-
tialization from the user. Unlike the ML estimator, the cost function of the SDP problem
in (14) is linear which ensures that there is only one minimum point. In MATLAB sim-
ulations, standard SDP solvers such as SeDuMi and SDPT3 are employed to solve SDP
optimization problems. Extracting from Z we can obtain the source location estimates
X.

4. Evaluation. To test the performance of the proposed SDP algorithm, we conduct a
group of simulations with 5 anchor nodes and 15 source nodes deployed in a 20 m ×
20 m square region. The geographic locations of the source nodes and anchor nodes are
shown as Figure 1. All noise variances δ2

i,j are all set to δ2. The proposed SDP convex
optimization algorithm was implemented by the CVX toolbox using SeDuMi as the solver.
The performance is evaluated in terms of the root mean square error (RMSE) with 500
Monte Carlo (MC) runs.
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Figure 1. Geometry of deployed 20 sensor nodes
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(a) Performance comparison with different noises
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(b) CDF of localization error, δ2 = 0.12

Figure 2. Performance comparison of different methods

Since the source nodes are connected with different anchor nodes, the RMSE perfor-
mance is diverse in the different source nodes. So the RMSE of the proposed algorithm
is calculated by averaging over all estimated source locations in the network. When the
transmission times of source nodes are all set to 1 s and assumed to be unknown, the
CRLB of source location estimates is derived in [10]. The ML estimator is solved by
the Levenberg-Marquardt algorithm using the true source location as the initial point.
Considering the full connectivity of all sensor nodes in Figure 1, we perform Monte Carlo
simulations with 500 ensemble runs to evaluate the RMSE of the location estimation.
The performance comparison is plotted in Figure 2 with ML estimator, the LP technique
proposed in [10], the proposed SDP algorithm and the CRLB of source location estima-
tion. When the noise variance δ2 is varied from 0.12 to 12, the RMSE performance of four
different methods is plotted in Figure 2(a). It is observed that the RMSE performance
degrades as the noise increases. The ML estimator is close to the CRLB and provides
much better accuracy performance due to the reasonable initialization. Compared with
the LP, the RMSE of the proposed SDP algorithm is reduced. Careful examinations in-
dicate that only the anchor-source measurements are employed into the LP technique, so
the accuracy performance of the LP is worse than that of the SDP algorithm.
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To further compare the performance of the different methods, we plot the cumulative
distribution function (CDF) in Figure 2(b) when δ2 is set to 12. It can be seen that the
performance order shown in Figure 2(b) is the same as Figure 2(a). 90% of the simulated
runs are less than 0.43 m in the LP, 0.36 m in the proposed SDP and 0.34 m in the
ML estimator. The proposed SDP algorithm provides better accuracy performance than
that of the LP algorithm. Compared with the ML estimator and the method of the LP,
the proposed SDP algorithm does not rely on the initialization and provides more robust
solutions for the source location estimates when the noise variance is increased from 0.12 to
12. Of course, the complexity of SDP algorithm is larger than the ML and LP algorithms
due to plenty of variables and equality constraints.

5. Conclusions. When the transmission time is unavailable, we address the problem of
TOA-based multiple source localization and build the optimization function of the corre-
sponding ML estimator. The numerical solution of ML estimator needs the initial guess to
ensure the global convergence. Without a good initial guess, however, local convergence
may occur. So the SDP algorithm is proposed for estimating the source locations along
with the transmission time. The accuracy performance of the SDP is better than that
of LP technique, for not only the anchor-source but also the source-source measurements
are employed into the optimization model. The SDP algorithm provides robust solutions
for multiple source location estimates. However, the computational complexity of SDP
algorithm is high due to a large number of variables and equality constraints.
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