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Abstract. In this paper, we propose a modified Barzilai-Borwein (BB) gradient method
for unconstrained optimization problems. The resulting algorithm has sufficient descent
property, which is independent of any line search. Furthermore, under mild conditions,
we establish the global convergence of the new method for smooth unconstrained optimiza-
tion. Some numerical results about impulse noise removal in image processing are given,
which indicate that the new method is efficient even for high noise ratio.
Keywords: Barzilai-Borwein gradient method, Global convergence, Two-phase method,
Image processing, PSNR

1. Introduction. In this paper, we consider the following unconstrained optimization
problem:

min f(x), x ∈ Rn, (1)

where f : Rn → R is a smooth function, bounded from below, whose gradient ∇f(x) is
denoted by g(x), or g is Lipschitz continuous. We are interested in the case that the number
n is large. The unconstrained optimization problem (1) is the mathematical model of many
scientific problems arising from game theory, transportation, economic equilibrium, image
restoration and compressive sensing, etc., see [1-3]. Moreover, the nonlinear equation

F (x) = 0, (2)

where F : Rn → Rn, can also be transformed into (1) by setting f(x) = ∥F (x)∥2/2.
In the past few decades, many efficient iterative methods have been proposed to solve

(1). Different from quasi-Newton method, conjugate gradient method and Barzilai-
Borwein gradient method do not need to compute and store any matrix; therefore, they
are attractive, especially when the dimension n is large, and have received a great deal of
attention, see [1-7].

In this paper, we intend to study the Barzilai-Borwein gradient method. Now, let us
recall this method, whose iterative scheme is

xk+1 = xk −
1

αk

gk, k = 0, 1, 2, . . . , (3)
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where xk is the kth iterative point, gk = g(xk), and αk is called BB steplength defined by

αI
k =

s⊤k−1yk−1

∥sk−1∥2
, or αII

k =
∥yk−1∥2

s⊤k−1yk−1

,

in which sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Though the search direction of BB gra-
dient method is always the negative gradient, the steplength is obviously different from
the choice of the steepest descent method. Due to its high efficiency, a large amount of
theoretical results have appeared in the literature. Barzilai and Borwein [1] have proved
that BB gradient method converges globally for the convex quadratic optimization with
two variables. Then, Raydan [2] has extended the above result to the convex quadratic
optimization with any number of variables by incorporating a nonmonotone line search.
Recently, the BB gradient method has been successfully generalized to solve the (con-
strained) nonlinear monotone equations, and the image restoration problems, see [4].

Note that the modified BB gradient methods in [2,3] have the sufficient descent property,
that is

g⊤
k dk ≤ −c∥gk∥2,

where c > 0. This property makes the proof of the global convergence of the correspond-
ing method easy and standard. In addition, the iterative methods with this property are
often more efficient than those without this property. However, the modified BB gradient
methods in [2,3] can only be used to solve the (constrained) nonlinear monotone equa-
tions, and the modified BB gradient method in [4] uses the inverse of αI

k to design the
descent direction, which is not reasonable (See the motivations in Section 2). Therefore,
in this paper, based on the modified BB gradient methods in [2-4], we shall design a new
BB gradient method for (1), which has the sufficient descent property under standard
assumptions, and also tends to the classical BB gradient method if the constant r > 0 (r
will be given later) is sufficiently small.

The rest of the paper is organized as follows. In Section 2, some motivations are in-
troduced and the detailed sufficient descent BB gradient method is outlined. In Section
3, the global convergence of the new method is proved under some standard conditions.
In Section 4, numerical results and comparison about the impulse noise removal in im-
age processing are reported to show the efficiency of the new method. Some concluding
remarks are summarized in the final section.

2. Motivations and Algorithm. For the nonlinear Equation (2), Zhang and Zhou [6]
introduced some interesting modifications of BB gradient method such that the modified
method has sufficient descent property. More specially, the search direction in [6] is

dk = − 1

θZZ
k

F (xk), (4)

where θZZ
1 = 1 and θZZ

k = s⊤k yk/∥sk∥2, if k ≥ 2. Here sk = xk − xk−1, yk = F (xk) −
F (xk−1) + rsk and r > 0 is a constant. By introducing the term rsk in yk and under the
mapping F (·) is monotone and Lipschitz continuous, Zhang and Zhou [6] proved that the
modified BB gradient method possesses the following nice property

−1

r
∥F (xk)∥2 ≤ F (xk)

⊤dk ≤ − 1

L + r
∥F (xk)∥2,

where L > 0 is the Lipschitz constant of the mapping F (·). Obviously, the right inequality
indicates that the search direction dk satisfies the sufficient descent property. The above
inequalities are based on the monotonicity of F (·), and F (·) is equivalent to g(·) in (1).
However, the mapping g(·) often does not assume to satisfy the monotone property. Thus,
we cannot generalize the modified BB gradient method in [6] to solve (1), though it satisfies
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the sufficient descent property. As for the method proposed by Liu and Li [4], its search
direction is also generated by

dk = − 1

θLL
k

F (xk), (5)

where θLL
1 = 1 and θLL

k = ∥sk∥2/s⊤k yk, if k ≥ 2. Here sk = xk −xk−1, yk = gk − gk−1 + tksk

and

tk = 1 + max

{
0,−s⊤k (gk − gk−1)

∥sk∥2

}
.

Obviously, θLL
k is the inverse of αI

k or θZZ
k . It is well-known that αI

k is deduced by using
some quasi-Newton property, which can greatly speed up the convergence rate of the
gradient method for quadratic functions. The parameter θLL

k can ensure that the search
direction dk generated by (5) satisfies the sufficient descent property, and this is the main
motivation of θLL

k . However, unlike θZZ
k , θLL

k cannot tend to αI
k except for some special

cases. Therefore, in this paper, we intend to design a modified BB gradient method which
not only has the sufficient descent property but also can reduce to the classical BB gradient
method in some cases.

Throughout this paper, we make the following assumptions.
Assumptions.
(A1) The level set Ω = {x ∈ Rn|f(x) ≤ f(x0)} is bounded.
(A2) In some neighborhood N of Ω, the objective function f(·) is continuously differ-

entiable and its gradient g(·) is Lipschitz continuous, i.e., there exists a constant L > 0
such that

∥g(x) − g(y)∥ ≤ L∥x − y∥, ∀x, y ∈ N. (6)

We now formally state the steps of the modified BB gradient method for solving problem
(1) as follows.

Algorithm 2.1
Step 0. Given an initial point x0 ∈ Rn, and choose four constants r > 0, ρ ∈ (0, 1),

δ ∈ (0, 1), ε > 0. Set k := 0.
Step 1. If ∥gk∥ ≤ ε, stop.
Step 2. Compute dk by

dk =


−gk, if k = 0,

− 1

θSS
k

gk, if k ≥ 1,
(7)

where θSS
k = s⊤k yk/∥sk∥2 is similar to αI

k, and sk = xk − xk−1, but yk is defined by

yk = (gk − gk−1) + tksk,

with

tk = r + max

{
0,−s⊤k (gk − gk−1)

∥sk∥2

}
.

Step 3. Determine stepsize αk by the following Armijo line search, αk = ρlk with lk
being the smallest nonnegative integer l such that

f(xk + αkdk) ≤ f(xk) + δα2
kg

⊤
k dk. (8)

Step 4. Let xk+1 = xk + αkdk. Set k := k + 1 and go to Step 1.
Now we give some remarks about Algorithm 2.1.

Remark 2.1. Obviously, we have the following inequality

s⊤k yk = s⊤k (gk − gk−1) + tk∥sk∥2 ≥ r∥sk∥2. (9)

On the other hand, if s⊤k (gk − gk−1) ≥ 0, then by (6), we have

s⊤k yk = s⊤k (gk − gk−1) + r∥sk∥2 ≤ (L + r)∥sk∥2.

If s⊤k (gk − gk−1) < 0, we have
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s⊤k yk = s⊤k (gk − gk−1) −
s⊤k (gk − gk−1)

∥sk∥2
∥sk∥2 + r∥sk∥2 = r∥sk∥2 ≤ (L + r)∥sk∥2.

By the above two inequalities and (9), we have

r ≤ θSS
k ≤ r + L. (10)

This together with (7) implies the following two important inequalities

−1

r
∥gk∥2 ≤ g⊤

k dk ≤ − 1

L + r
∥gk∥2. (11)

Obviously, the right inequality indicates that the search direction dk generated by Algorithm
2.1 satisfies the sufficient descent property. In addition, from (10), we can also get another
two important inequalities

1

L + r
∥gk∥ ≤ ∥dk∥ ≤ 1

r
∥gk∥. (12)

Remark 2.2. Obviously, if r = 0 and s⊤k (gk−gk−1) ≥ 0, then θSS
k reduces to αI

k. Therefore,
the descent direction dk defined by (7) is identical to the direction of the classical BB
gradient method.

3. Global Convergence. In this section, we shall prove the global convergence of Al-
gorithm 2.1 under Assumptions (A1) and (A2). First, we need to prove that the line
search scheme (8) will terminate in a finite number of steps for every k ≥ 0 to ensure that
Algorithm 2.1 is well-defined.

Lemma 3.1. Algorithm 2.1 is well-defined, namely, there exists a nonnegative integer lk
satisfying the line search scheme (8) for all k.

Proof: The proof is standard, and thus is omitted.

Lemma 3.2. There exists a constant ϱ > 0 such that the stepsize αk involved in Step 3
of Algorithm 2.1 satisfies

αk ≥ min

{
1, ϱ

∥gk∥2

∥dk∥2

}
. (13)

Proof: If αk ̸= 1, then by the acceptance rule of stepsize αk in Algorithm 2.1, we have
α′

k = αk/ρ does not satisfy (8), namely f(xk +α′
kdk) > f(xk)+δ(α′

k)
2g⊤

k dk. This and (11),
(12) give

f (xk + α′
kdk) > f(xk) −

δ(α′
k)

2

r
∥gk∥2 ≥ f(xk) −

δ(L + r)(α′
k)

2

r
∥dk∥2. (14)

On the other hand, from the mean value theorem, (11) and (A2), there exists a constant
θk ∈ (0, 1), such that

f (xk + α′
kdk) − f(xk) = α′

kg(xk + θkα
′
kdk)

⊤dk

= α′
kg

⊤
k dk + α′

k(g(xk + θkα
′
kdk) − gk)

⊤dk

≤ − α′
k

L + r
∥gk∥2 + (α′

k)
2L∥dk∥2,

which together with (14) shows that (13) holds with ϱ = r
(L+r)(rL+δ(L+r))

. This completes

the proof.

Lemma 3.3. Let the sequence {dk} be generated by Algorithm 2.1. Then we have

lim
k→∞

αk∥dk∥ = 0. (15)

Proof: Elementary.
Now, using the above lemmas, we can obtain the global convergence of Algorithm 2.1

as follows.
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Theorem 3.1. Suppose that (A1) and (A2) hold. Then the sequence {xk} generated by
Algorithm 2.1 is global convergence in the sense that

lim
k→∞

inf ∥gk∥ = 0.

Proof: By contradiction, we suppose that the conclusion is not right. Then there exists
a constant ε > 0 such that ∥gk∥ ≥ ε, ∀k ≥ 0. This together with (12) implies that

∥dk∥ ≥ ε

L + r
, ∀k ≥ 0.

Combining the above inequality with (15) gives

lim
k→∞

αk = 0. (16)

On the other hand, (A1) and (A2) imply there is a constant γ > 0 such that ∥gk∥ ≤ γ,
∀k ≥ 0. Then, this and (12) give that

∥dk∥ ≤ γ/r. (17)

Thus, from (13) and (17), we get αk ≥ min
{

1, ϱε2r2

γ2

}
, ∀k ≥ 0. This yields a contradiction

with (16). The proof is then completed.

4. Numerical Results. In this section, we use Algorithm 2.1 to remove the salt-and-
pepper impulse noise in the second phase of the two-phase method [5], and present some
numerical experiments to evaluate its performance. At the same time, we also give some
comparisons with the related algorithms, including the PRP conjugate gradient method
in [5], denoted by CCM, and the modified BB gradient method in [4], denoted by LL.

Let X = [xi,j]M×N be the true image with M -by-N pixels. For each (i, j) ∈ A :=
{1, 2, . . . , M} × {1, 2, . . . , N}, let Vi,j be the neighborhood of (i, j), i.e., Vi,j = {(i, j −
1), (i, j + 1), (i − 1, j), (i + 1, j)}. In addition, let yi,j be the observed pixel value of the
image at the position (i, j). Now let us review the efficient two-phase method for restoring
images corrupted with high level salt-and-pepper impulse noise. In the first phase, the
salt-and-pepper impulse noise is detected by the adaptive median filter (AMF), and let
N ⊆ A denote the set of indices of the noise pixels detected in this phase. Then, the
second phase is the recovering of the noise pixels by minimizing the following function:

Gα(u) =
∑

(i,j)∈N

{ ∑
(m,n)∈Vi,j\N

φα(ui,j − ym,n) +
1

2

∑
(m,n)∈Vi,j∩N

φα(ui,j − ym,n)

}
, (18)

where α is the regularization parameter, and φα is an edge-preserving function, and
u = [ui,j](i,j)∈N is a column vector of length lexicographically. Here c denotes the number
of element of N .

We implemented all the algorithms with codes written in Matlab 7.10. The testing is
performed on a PC computer with Pentium(R) Dual-Core CPU T4400@2.2GHz, 4GB of
memory. The test images are two 256 × 256 gray level images (Cameraman and Lena)
and two 512 × 512 gray level images (Barbara and Boat).

Throughout the computational experiments, the parameters used in Algorithm 2.1 are
chosen as follows: r = 0.0001, ρ = 0.4, δ = 0.2, and the parameters used in LL are
chosen as follows: τ =

√
99/8, ρ = 0.9, δ = 0.5. The CCM does not use any line search,

and its stepsize is computed explicitly by αk = δ
g⊤k dk

∥dk∥2 , at each iteration with δ =
√

99/8.

To assess the restoration performance qualitatively, we use the peak signal to noise ratio
(PSNR) defined as

PSNR = 10 log10

2552

1
MN

∑
i,j

(
u∗

i,j − xi,j

)2 ,
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where u∗
i,j is the pixel values of the restored image. Furthermore, the stopping criterion

of three algorithms are

|Gα(uk) − Gα(uk−1)|
|Gα(uk)|

≤ 10−4, or
∥uk − uk−1∥

∥uk∥
≤ 10−4.

The edge-preserving function φα is defined as

φα(t) =

{
t2/(2α), if |t| ≤ α,
|t| − α/2, if |t| > α,

with α = 10.
Table 1 lists some detailed numerical results with different noise levels r = 30%, 50%,

70%, and 90%, respectively. All the experiments are repeated 10 times and the average
of the ten results are reported. We report the CPU time (in second), the number of
iterations (Niter) required for the whole denoising process and the PSNR of the recovered
image. From Table 1, we find that: (1) For the same stopping criterion, three algorithms
generate almost the same PRSNs, which indicates that the qualities of restored images
from three algorithms are similar; (2) Comparing with the other two criteria: CPU and
Niter, we find that Algorithm 2.1 is faster than the other two algorithms, since it needs
less CPU and less Niter to reach the same accuracy. Overall, Algorithm 2.1 is an efficient
method for the subproblem (18) of the two-phase method.

Table 1. Performance of salt-and-pepper denoising via three algorithms

Image r(%) CCM LL Algorithm 2.1

PSNR CPU Niter PSNR CPU Niter PSNR CPU Niter

Cameraman

30 30.34 3.44 49.8 30.48 3.15 46.0 30.53 2.98 30.6

50 27.30 5.48 61.6 27.38 5.80 59.2 27.37 4.10 32.8

70 24.57 8.28 81.8 24.65 8.04 81.2 24.74 6.48 44.0

90 21.11 16.68 155.4 21.14 14.75 155.0 21.15 11.18 67.8

Lena

30 33.34 2.67 23.6 33.38 2.37 31.0 33.39 2.54 30.8

50 30.03 4.06 44.5 30.04 4.01 43.1 30.07 3.19 26.2

70 27.02 6.06 64.4 27.04 6.46 64.4 27.11 4.39 32.8

90 22.71 13.47 131.6 22.68 14.09 129.0 22.68 9.75 59.6

Barbara 70 24.57 26.15 55.0 24.56 25.92 53.2 24.58 21.71 30.0

Boat 70 27.90 29.41 63.0 27.90 28.70 59.4 27.90 24.85 36.2

5. Conclusions. In this paper, we proposed a modified Barzilain-Borwein gradient meth-
od for the unconstrained optimization. The most desirable property is that the direction
generated by the new method is always sufficient descent. In the future, we shall further
study the BB gradient method and apply it to other domains, such as compressive sensing,
and nonlinear regression.
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