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ABSTRACT. Transactional Memory offers a neat programming interface for concurrent
software developing. Previous Software Transactional Memory system shows great ad-
vantages over locking on synchronizing concurrent accesses but it is trapped by its low
performance. Recent hardware support from Intel and IBM draws new lights on reducing
the huge overhead of transactional processing. However, certain hardware limitations
have made it a difficult task to use hardware transactions efficiently. A fall-back strategy
1s meeded to avoid constant abortion of hardware transactions due to the hardware limi-
tations. We show in this paper that different fall-back strategies would hugely affect the
performance of different applications and we introduce an efficient dynamic adjustment
strategy to achieve optimal performance in all situations. Our key observation is that
the atomic blocks in the same execution context are likely to fit the same strateqy. Based
on this observation, we show in experiments that our dynamic method could achieve an
average speedup of 1.4X over static method and 1.05X over TUNER.
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1. Introduction. The prevalence of multi-core architecture has made multi-threaded
programming the mainstream method for software developing. Multi-threaded programs
require proper synchronization mechanism on accessing shared data. Fine-grained locking
[1], in many years, has been the main and the most efficient way to achieve this. However,
programming with locking has been proven to be difficult and error-prone [1]. Debugging
this kind of programs is also a torment [1]. The concept of Transactional Memory (TM) [2]
was introduced in this scenario to offer a neat programming interface while guaranteeing
the correctness of multi-threaded programs. It has shown great potential to simplify
software developing and debugging.

In the last decades, Software Transactional Memory (STM) [3] has demonstrated the
feasibility of this way but its efficiency and performance are not comparable to that of
fine-grained locking, even after a lot of improvements [4]. The performance problem has
been hindering the wide adoption of TM for a long time. Recent hardware support from
Intel [5] and IBM drew new lights on this. However, it is not an easy task to achieve
high efficiency with current hardware support because of the limitations of hardware [6]
(as current HTM is based on cache coherence protocol, it would be affected by the small
cache capacity, interrupt, context switch, etc.). Hardware Transactional Memory (HTM)
requires a fall-back strategy to tackle the limitations and to avoid constant abortion of
hardware transactions. As we will show in this paper, different fall-back strategies would
hugely affect the performance and, most importantly, there is no one strategy that can
fit all the situations. Thus dynamic adjustment is essential.

This paper presents an efficient way to dynamically adjust the fall-back strategy to
achieve optimal performance for HTM. Our dynamic adjustment mechanism is based
on an important observation: atomic blocks in the same execution context (the same
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function or the same loop) fit the same call-back strategy. Based on this observation, we
can dynamically profile the execution and choose the optimal strategy for each atomic
block and thus achieve better performance. Experiments show our method could achieve
an average speedup of 1.4X over static method.

The rest of the paper is organized as follows. We give a brief introduction to TM
programming and the problem in HTM in Section 2. Section 3 gives the design and
implementation of our dynamic adjustment method. We show experimental results in
Section 4 and conclude in Section 5.

2. Background and Motivation. In this section we firstly give a brief introduction of
TM and then we discuss the key problem of current HTM.

2.1. Programming with Transactional Memory interface. Figure 1 shows the sam-
ple code of programming with locking and TM interface. In this scenario there are two
shared variables @ and b. In Figure 1(a), the two variables are protected by the lock la
and [b, respectively. If one thread wants to update the two variables at the same time,
it should hold the two corresponding locks. As shown in Figure 1(a), programming with
locking in this scenario is complex and may introduce bugs such as deadlock. Alter-
natively, Figure 1(b) shows the code with Transactional Memory interface. To express
the same semantic, programmers only have to put the code into an atomic block. The
compiler will then instrument all the memory accesses in the atomic blocks as shown in
Figure 1(c) [7]. Then the TM runtime is able to execute each atomic block (could be also
referred to as transaction) in isolation (all the updates to shared variables will be buffered
as thread-local and submitted to the global version at commit time). If one thread detects
conflict (e.g. two threads modify the same shared variable) before submitting the updates
to the global version, it has to abort the current transaction and restart executing the
atomic block again. In all, the TM runtime will guarantee the execution seems like all
the atomic blocks are executed in certain serial order.

inta, b; //global

lock_tla, Ib; //lock
Thread1: Thread2: Thread1l: Thread2: Threadl: Thread2:
lock(la); lock(la); Atomic Atomic Tm_begin(); Tm_begin();
lock(lb); lock(Ib); { { Tm_write(a, 1); Tm_write(b, 1);
a=1; b=1; a=1; bh=1; Tm_write(b, a); Tm_write(a, b+1);
bh=a; a=b+l; b=a; a=b+l;
Tm_end(); Tm_end();
unlock(la); unlock(la); } }
unlock(lb); unlock(lb);
@ 7 (b) (c)

F1cURE 1. Comparison between locking and TM

2.2. Hardware Transactional Memory. A key process in transactional processing is
conflict detection, which is very time-consuming in Software Transactional Memory (STM)
[3,4]. Current hardware support for this is based on cache coherence protocol: every core
has its private cache. If other cores modify the shared data that has already been cached
by a core, the certain private cache line will be invalidated. From this event we can detect
the conflict among threads on accessing shared variables and this introduces ignorable
overhead. However, the hardware does not guarantee that a hardware transaction will
always successfully commit even when there are no conflicts. For example, a cache line will
be evicted due to space pressure, leading to the abortion of the corresponding hardware
transactions. Thus a fall-back strategy for hardware transaction is essential to avoid
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constant abortion of transactions. Figure 2 shows the pseudo-code of using hardware
transaction.

The main procedure of using hardware transaction (as shown in Figure 2) is that we
try several times of hardware transactions before falling back to serial execution. There
is a trade-off in this situation: on one hand, the hardware transaction is fast and could
leverage the multi-core to gain performance benefit but the hardware cannot guarantee the
successful commit of the transactions, even in the absence of conflict. On the other hand,
falling back to serial execution would lose the benefit of concurrency but it guarantees the
proceeding of transactions. Thus a key problem here is to determine when to fall-back
to serial execution (to determine the line 1 and line 6 in the sample code in Figure 2).
For example, if the abortion of transaction is due to conflict, we can try it for more times
because it has chances to succeed. However, if the abortion is due to the cache capacity
(the transaction accesses data that could not be fit into a single cache line), we will know
that this transaction would never successfully commit and thus a better way is to fall-back
to serial execution immediately.

Figure 3 shows examples that different strategies would hugely affect the overall perfor-
mance in different applications. For example, for the bayes in 8 threads, the attempts = 2
is the best setting and it outperforms attempts = 1 by more than 2X. While for kmeans,
the attempts = 8 is the best setting. The benchmarks bayes and kmeans are from the
benchmark suit STAMP [8]. We can see that there is no fit strategy which can always
achieve the best performance. This reveals the needs for dynamic adjustment.

1: Int attempt = n; //try n times of hardware transaction
2: Retry:
3: Endcode = Try_transactions(); //this tries to run atomic block using hardware transaction
4: //(XBEGIN and XEND).
5: If(Endcode == failed){
6: attempt = attempt -1; //this is the key of fall-back strategy.
7 if(attempt > 0)
8: goto Retry;
9: lelse{
10: //we have to fall back to serial execution
11: //get a global lack, run atamic block, and release the global lock
12: }
13:}
FIGURE 2. Sample code of using hardware transaction
5 5 -
as bayes as | kmeans
4 - 4 -
35 ==gumattempts = 1 35 - w—gemattempts = 1
2 3 attempts =2 Y 3 attempts = 2
E 2.5 - =fe—attempts = 4 E 2.5 - wefpattempts = 4
" 2 mattempts = 8 ? 2 7 émattempts = 8
1.5 A 15 4
14 14
0.5 0.5 4
0] 0
1 2 4 8 1 2 4 8
number of threads number of threads

F1GURE 3. Performance under different strategies



2394 P. WU

3. Efficient Self-tuning. As discussed in Section 2, our goal is to dynamically adjust
the fall-back strategy for each atomic block in an application. Specifically, we have to
determine the initial number of attempts and the decrement (line 1 and line 6 in Figure
2) to get optimal performance. Our method is based on two observations or principles
and we discuss them in the next two subsections.

3.1. The size of atomic blocks. If one atomic block is small (contains small number
of instructions), it has more chances to commit because it is less likely to conflict with
other threads or to be interrupted by other events such as cache line eviction. Thus for
this kind of atomic block we can set the number of attempts to be larger to try it for
more times.

We can detect the size of an atomic block during compiling time. To achieve this we
leverage the well-known compiler framework LLVM [9]. LLVM will firstly translate the
applications’ source code into intermediate code and then translate the intermediate code
into the final binary code. The LLVM framework offers convenient interfaces for us to
perform analysis on the intermediate code level. Thus we can just count the instructions
in each atomic block and then insert instructions to set the initial attempts (line 1 in
Figure 2) at the beginning of each atomic block. In our current implementation, we set
the initial attempts as: attempts = 20 — number_of-instructions/100. The maximum is set
to be 20 and the minimum is set to be 1. The larger the atomic block is, the smaller the
attempt is set to be. Moreover, for simplicity, we just set the initial number of attempts
fixed at compiling time and do not adjust it later at runtime. At runtime we can adjust
the decrement (line 6 in Figure 2) to achieve further dynamic adjustment.

3.2. Atomic blocks in the same execution context. Atomic blocks in the same
execution context (the same function or the same loop) are likely to fit the same strategy.
This is because the codes in the same execution context are likely to have the same memory
access pattern, which has been proven in previous work [10]. Moreover, programs tend
to implement similar features in the same execution context. Thus we can determine the
strategy for the latter atomic block according to the execution of the previous atomic
block. Specifically, if we find the previous atomic block has aborted for many times and
finally fell back to serial execution, we will change the line 6 in Figure 2 from attempts—
to attemptes/=2 to accelerate this process for the latter atomic block.

An atomic block is not likely to be just executed once. Thus we will also keep a history
of execution record for each atomic block. Thus the strategy of each atomic block is
not only affected by the previous atomic block in the same execution context, it is also
affected by the previous execution history of its own.

To determine whether two atomic blocks are in the same function, we rely on backtrace()
in the libc library. To determine whether two atomic blocks are in the same loop, we rely
on the LLVM [9] compiler framework to identify loops at compiling time. We insert a
special function call at the beginning of each loop in which we give each loop an ID at
runtime. Identifying loops is a mature tool provided in LLVM framework.

4. Experimental Results. This paper introduces efficient method to dynamically tun-
ing the fall-back strategy for hardware transactional memory. In the experiment we mainly
test and compare our method with default static method. We also compare our work with
a previous relevant tool TUNER [6] which aims to achieve the same goal. TUNER adjusts
the strategy only based on the isolated history of each atomic block. It does not discover
the relationships among atomic blocks in the same execution context. As we will show in
the experiments that our work performs better than TUNER in most cases and our work
could be combined with TUNER to achieve better performance.

Our experimental platform is an Intel server with HTM support running Linux 3.11
with 16 GB of physical memory. Our benchmarks are from the transactional memory
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F1GURE 4. Comparison of different strategies

W attempts = 8
1.5 +— |- | TUNER
mOPT

speedup

genome intruder  ssca2  labyrinth vacation

F1GURE 5. Comparison of different strategies with 4 threads

benchmark suit STAMP [8]. The inputs are default native running (we always choose
high contention if not specially mentioned).

Figure 4 shows the results in the benchmarks bayes and kmeans. We can see for all the
situations our method (OPT) behaves better than TUNER and other static strategies.
The largest gap lies on the 4-threads situation because 4 threads running exhibits interme-
diate contention that calls for fine-grained adjustment. Figure 5 shows other benchmarks
with 4 threads running. Averagely, our method could achieve 1.4X speedup over static
method and 1.05X speedup over TUNER.

5. Conclusions. This paper introduces an efficient dynamic fall-back strategy for hard-
ware Transactional Memory. By exploiting the relationships of atomic blocks that are in
the same execution context, we can effectively profile the execution and determine the
optimal fall-back strategy. Experimental results show that our dynamic method could
achieve an average speedup over static method of 1.4X and 1.05X over the previous
state-of-the-art dynamic method. Our future work mainly lies on integrating software
transactions into the fall-back process of hardware transactions.
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