
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 10, October 2016 pp. 2405–2411

AN IMPROVED LABEL PROPAGATION ALGORITHM
WITH EXTENSIONAL LOCAL CLUSTERING COEFFICIENT
FOR COMMUNITY DETECTION IN COMPLEX NETWORKS

Lei Fang1,2, Qun Yang1,2 and Xiangmao Chang1,2

1College of Computer Science and Technology
2Collaborative Innovation Center for Novel Software and Industrialization

Nanjing University of Aeronautics and Astronautics
No. 29, Jiangjun Avenue, Jiangning District, Nanjing 211106, P. R. China

Qun.Yang@nuaa.edu.cn

Received February 2016; accepted May 2016

Abstract. The time complexity of label propagation algorithm (LPA) is lower than
most of the existing algorithms for community detection. However, there are still some
drawbacks in the algorithm. Therefore, we proposed the extensional local clustering coef-
ficient to measure an edge’s ability to transfer labels and used the measure to improve the
label propagation algorithm. The novel algorithm was tested on several real-world com-
plex networks. Experimental results show that the optimized algorithm can improve the
robustness and effectiveness for community detection.
Keywords: Community detection, Extensional local clustering coefficient, Label prop-
agation algorithm, Complex networks

1. Introduction. Complex networks contain some statistical properties, such as “small-
world” [1], scale-free properties [2] and community structure. Among them, the commu-
nity structure gains more focus due to its significant effect and widespread use. Many
approaches, such as user interaction based algorithm [3], clustering algorithm [4,5], in-
formation cascade-based model [6], and semantic network-based algorithm [7] have been
proposed to tackle the community detection problem. Usually, a community is a set of
nodes closely connected to each other but sparsely connected to those nodes which are
not in the community [8,9]. The nodes in the different communities usually form different
functional modules. For instance, communities in a citation network are sets of relevant
papers on the same topic [10].

The time complexity of most existing algorithms for community discovery is higher than
expectation. Some algorithms even require prior parameters, such as the total number of
communities or the rough size of communities. Such factors can have a negative impact on
the application of the algorithm. In view of these shortcomings, Raghavan et al. proposed
the label propagation algorithm to detect communities [11]. The algorithm uses both the
structural characteristics of the network and the propagation characteristics at the same
time. In addition, it does not need to specify the number of communities in networks or
design the objective function beforehand. More importantly, it is easy to implement and
costs relatively less time, which makes it possible to be applied to large-scale networks
[12].

Nonetheless, compared to the previous algorithms, LPA does not perform well in terms
of both accuracy and stability, because of its randomness in the initial label allocation
phase and the following step of updating labels. It exploits the propagation character
of the network instead of many structural properties, which causes the label propagation
process out of control and the randomness of the algorithm becomes obvious.
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Many research works have paid attention to LPA. Algorithms, including multivariate
graph-based method [13], balanced label propagation [14] and parallel SLPA [15], have
been proposed. Xie and Szymanski proposed the neighborhood strength driven label prop-
agation algorithm [16]. It modifies the label update rule of LPA but additional parameters,
which are often difficult to determine, are introduced. Lin et al. proposed the label prop-
agation algorithm with community kernel (CKLPA) [17]. The algorithm is more stable
than the original LPA, but the community kernel is required to be detected first and the
size of the community kernel is required to be selected manually. Therefore, based on
the structural characteristics of the network, the extensional local clustering coefficient
is presented in this paper. It can be used to control the propagation phase and help
the labels cluster more easily. Besides, it can effectively reduce the randomness in the
propagation of the labels. The calculation process is consistent with the definition of the
community, which makes the results much closer to the definition of the community.

The rest of the paper is organized as follows. The original label propagation algorithm,
the local clustering coefficient and the Jaccard similarity are introduced in Section 2.
The label propagation algorithm with extensional local clustering coefficient (ELCLPA)
is described in Section 3. And the experiments for community detection are described in
Section 4. Finally, conclusions are given in Section 5.

2. Problem Statement and Preliminaries. G(V, E) is an unweighted and undirected
graph which can represent the complex network. V is the set of all the nodes in graph G
and E is the set of edges connected between the nodes in V . eij stands for the edge that
connects the node vi with the node vj.

L(v) is the label of the node v (v ∈ V ) and N(v) is the set of the node v’s neighbors.
The label of each node is only influenced by its neighbors. After several iterations, the
close-connected nodes receive the same label. And the nodes with the same label are
clustered in a community. The formula of L(v) is shown below [12]:

L(v) = arg max
l

∣∣N l(v)
∣∣ (1)

N l(v) is the set of all the nodes, which have the same label l, in the neighborhood of
v. L(v) is the label that most of the node v’s neighbors obtain currently. Below are the
key steps of the original label propagation algorithm.

• First, each node is labeled with a unique label (an integer). The label represents the
community that it belongs to.

• Then, it updates all nodes’ labels in iterations. For the node v, the label will be
updated by Equation (1). It means that the new label is the largest one among the
labels of all the neighbors of the node v. However, if there are several candidate
labels, the node v will select one label randomly. Repeat this step until all nodes’
labels do not change.

• Finally, the nodes with the same label are clustered into the same community.

Watts and Strogatz introduced the local clustering coefficient [1] which can quantify
how close a node’s neighbors are to be a clique (complete graph). The local clustering
coefficient determines whether a graph is a small-world network.

The neighborhood of the node i is defined as below:

Ni = {vj|eij ∈ E} (2)

|Ni| is the radix of the set Ni and its value is the number of the nodes in the neigh-
borhood of the node i, too. eij and eji are considered identical in an undirected graph.

Therefore, if the node vi has |Ni| neighbors, |Ni|∗(|Ni|−1)
2

edges could exist among its neigh-
bors at most.
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The local clustering coefficient Ci of the node vi is given by the below formula [1].

Ci =
2|{ejk|vj, vk ∈ Ni, ejk ∈ E}|

|Ni| × (|Ni| − 1)
(3)

According to the above Equation (3), if there is a complete graph constituted by the
neighbors of node vi, the local clustering coefficient Ci of the node vi would be 1. The
subgraph, which consists of the node vi and its neighbors, is also a complete graph. If a
graph is close to the complete graph, the value of its Modularity Q would be close to 1.
Thus, the local clustering coefficient represents the important structural information of a
node. However, it is only a measurement for one node and cannot be combined with the
label propagation. We need a measure function which can evaluate the edge’s ability to
transfer labels.

For an undirected graph, the number of common neighbors of two nodes can indicate
the degree of closeness between them. The more the common neighbors of the two nodes
are, the higher the possibility that they belong to the same community is. In LPA, if
there are many nodes which are both connected with the node vi and vj and there is an
edge eij between vi and vj, it can be regarded that the labels would transfer more easily
between them. In most cases, the Jaccard similarity is used to calculate the similarity of
two sets. Here we use the following Formula (4) to calculate the similarity between the
two nodes vi and vj:

Sjaccard =
|Ni ∩ Nj|
|Ni ∪ Nj|

(4)

where Ni ∩ Nj shows the common neighbors of vi and vj. And Ni ∪ Nj are the total
neighbors of these two nodes.

The Jaccard similarity is only influenced by the number of the common neighbors. If
the two nodes vi and vj have the same neighbors, their Sjaccard would be one. However,
it cannot indicate the topological information among these neighbors. Whether these
neighbors are connected completely or there are not any edges between any two nodes of
them, the Sjaccard is only related to the number of them.

In view of this problem, this paper extends the similarity parameter with the local
clustering coefficient to show the similarity and joint degree between two nodes at the
same time.

3. Label Propagation Algorithm with Extensional Local Clustering Coeffi-
cient. In LPA, as all labels spread on edges, in this paper we focus on the coefficient
of two nodes of an edge. The local clustering coefficient is a concept based on the single
node. And it quantifies the closeness of its neighbors, which determines whether they

Figure 1. An example for extensional local clustering coefficient



2408 L. FANG, Q. YANG AND X. CHANG

are to be a clique (complete graph). We need a measure to quantify the closeness of the
common neighbors which belong to the two nodes in the same edge. If the two nodes
connect to all the nodes in a clique (complete graph) and these two nodes are connected,
the edge is in the clique. For example, in Figure 1 above, the node 1 and the node 2
are connected by a solid line and the dashed part is a complete sub-graph in the whole
graph. When the node 1 and the node 2 are both connected with all the nodes in the
dashed subgraph, the whole graph becomes a complete graph which means that labels
may transfer more easily between the two nodes of the edge e12. Thus, we introduce the
extensional local clustering coefficient to calculate the edge’s ability to transfer labels.

The neighbors Ni of the node i are replaced by common neighbors Ni∩Nj which belong
to the two nodes in the edge eij. Equation (3) is transformed into the following form:

Cij =


|Ni ∩ Nj| ×

2|{emn|vm,vn∈Ni∩Nj ,emn∈E}|
|Ni∩Nj |×(|Ni∩Nj |−1)

+ 1

2
+ 1 |Ni ∩ Nj| > 1

2 |Ni ∩ Nj| = 1
1 |Ni ∩ Nj| = 0

(5)

Equation (5) is a good measurement of the edge’s ability to transfer labels. It can avoid
some particular cases. For example, when two nodes of an edge do not share a neighbor,
the label cannot transfer on the edge. The extensional local clustering coefficient is a
measure of the similarity and the tightness of the two nodes in an edge. The more closely
they are connected with each other, the larger the extensional local clustering coefficient
of the edge is. Usually, the measure is smaller on the edges between communities than
the edges within communities. Thus, each edge’s ability to transfer labels in a complex
network can be measured by the extensional local clustering coefficient. Then LPA is
transformed to the new algorithm, ELCLPA. In ELCLPA, the formula of L(vi) is as
below:

L(vi) = arg max
l

∑
eij∈E

C l
ij (6)

L(vi) is the label of node vi (vi ∈ V ) and if node vi is connected with node vj, edge
eij ∈ E. Cij is the extensional local clustering coefficient of eij. And C l

ij means that the
label of the node vj is l.

The main steps of ELCLPA are as follows.

• ELCLPA calculates the extensional local clustering coefficient of each edge eij first.
• And then, it also updates labels in a random order, but it uses L(vi) in Equation (6)

instead of L(v) in Equation (1). In the initial label allocation phase, each node vi

can obtain the label from its neighbor vj, and the Cij of the edge eij is the maximum
one among all the edges connected with vi. This is more reasonable than the random
selection in LPA’s initialization. And at the step of updating labels, each node selects
the label whose sum of Cij is the maximum instead of one of the labels that most
of the node’s neighbors obtain currently. If there are several candidates, ELCLPA
randomly selects one from them.

• All the nodes with the same label are clustered into the same community at last.

4. Experiments and Discussion. Modularity Q is a significant measurement of com-
munity’s quality to distinguish between results of different community detection algo-
rithms.

Q =
∑

i

(
eii − a2

i

)
(7)

where eii is the fraction of the edges in community i, and ai is the fraction of the edges
that link to the nodes in community i. Q is between zero and one, and the more Q is
close to one, the better the quality of communities is.
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The normalized mutual information (NMI) is widely used in clustering problems to
measure the similar degree of two clustering results.

NMI(A,B) =
2I(A, B)

H(A) + H(B)
(8)

Here we use the NMI to evaluate the stability of different community detection algo-
rithms. A and B stand for two community partitions in a network. If A is identical to
B, NMI(A,B) = 1. If A is totally different from B, NMI(A,B) = 0.

There are six different real-world network datasets in Table 1. Their topological struc-
tures are different from each other. The “Clusters” shows the real number of communities
in the networks. And the “–” means that the value is unavailable.

We test LPA, CKLPA and ELCLPA on the networks provided in Table 1 for 50 times.
The number of communities that they discovered is shown in Table 2. And the number is
the mode of all 50 results here. The table shows that the number of communities which
is discovered by ELCLPA, is closer to the real number compared with the other two
algorithms.

Average modularity Q and average NMI of these results is displayed in Table 3. From
the table we can see that ELCLPA’s average modularity Q and NMI are larger than the
results of LPA and CKLPA in all networks. The average modularity Q of CKLPA is
larger than LPA sometimes but its NMI is not larger than LPA in most cases. It must be
affected by the parameters which are manually selected. So ELCLPA’s results are better
and more stable.

Table 1. The real-world networks and their information

Network Nodes Edges Clusters
Karate [18] 34 78 2
Dolphins [19] 62 159 2
Books [20] 105 441 3
Football [9] 115 613 12
Blogs [21] 1490 16715 –
Netsci [22] 1589 2742 –

Table 2. The number of communities discovered in the networks

Network Clusters LPA CKLPA ELCLPA
Karate 2 3 3 2
Dolphins 2 6 3 2
Books 3 3 5 3
Football 12 8 7 12

Table 3. The average modularity Q and NMI

Network
Modularity Q NMI

LPA CKLPA ELCLPA LPA CKLPA ELCLPA
Karate 0.31 0.35 0.39 0.65 0.62 0.87
Dolphins 0.45 0.42 0.54 0.54 0.48 0.75
Books 0.47 0.52 0.56 0.52 0.55 0.57
Football 0.53 0.32 0.58 0.89 0.84 0.94
Blogs 0.40 0.35 0.45 0.35 0.31 0.42
Netsci 0.84 0.73 0.90 0.32 0.33 0.54
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5. Conclusions. Label propagation algorithm is a linear time algorithm for community
detection without using any prior parameters. However, its performance of accuracy is
not good enough and its randomness can hardly be ignored. For this reason, ELCLPA
is proposed for community detection. ELCLPA gives each edge a weight which measures
the edge’s ability to transfer labels, involving adequate local topological information. The
experimental results show that the results of ELCLPA are more accurate than LPA and
CKLPA. Besides, ELCLPA is more stable than the other two algorithms in different sizes
of networks. Furthermore, the communities, which are detected by ELCLPA, are closer
to real communities in complex networks. Here, we can draw a conclusion that ELCLPA
optimizes the robustness and effectiveness of LPA. In the future research, we will improve
ELCLPA for community detection in directed networks.
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