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ABSTRACT. In this paper, a modified orthogonal matching pursuit algorithm is proposed
to indirectly identify both the control plant and the feedback controller of a class of closed-
loop systems with unknown orders and large time-delays. The identification method con-
tains two steps. The first step is to identify the orders, time-delays and the parameters
of the plant using the proposed algorithm. The second step is to extract the parameters
of the feedback controller. The proposed method can effectively identify the time-delays,
orders and parameters of both the control plant and the feedback controller, and requires
only a small number of sampling data. A simulation example is given to verify the effec-
tiveness of the proposed algorithm.
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1. Introduction. Identification of a plant in closed-loop operation is of great signifi-
cance in system identification, since feedback is very common in most dynamic systems.
Closed-loop identification has received considerable attention in [1, 2, 3, 4]. The indi-
rect closed-loop identification is commonly used when the input of the control plant is
unmeasurable. The main idea is to firstly identify the model of the closed-loop system
based on the measurable external input and the output data, and then to extract the
parameter estimates of the control plant based on the knowledge of controller. In this
literature, several least squares based methods have been developed, such as the bias-
correction based least squares methods in [5, 6, 7] and the instrumental variable least
squares method in [8, 9]. Generally, the indirect closed-loop system identification requires
that the feedback controller is known. In this paper, we consider that the parameters of
both the control plant and the controller are unknown. In most process industries, time-
delays are unavoidable in their dynamical behavior [10, 11]. Therefore, it is important to
identify the time-delays of a closed-loop system together with the parameters and orders.
In this paper, we consider the case that both the control plant and the feedback controller
have large time-delays, and the time-delays as well as the system orders are unknown.
Therefore, the tasks of this paper seem complicated and are as follows:

e to estimate the parameters of the control plant and the feedback controller;
e to estimate the orders of the control plant and the feedback controller;
e to estimate the time-delays of the forward and backward channels.

Because the time-delays are unknown, the identification model of the closed-loop sys-
tem is an over parameterized model with a high dimensional and sparse parameter vec-
tor. Inspired by the recovery theory of compressed sensing (CS) [12, 13], the orthogonal
matching pursuit (OMP) algorithm is considered useful and can be improved for identi-
fying the sparse parameter vector. The OMP algorithm is an iterative greedy algorithm,
which can recover a high-dimensional sparse signal from a small set of measurements
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[14, 15]. Compared with other sparse approximation algorithms, the major advantages of
the OMP algorithm are its simplicity and fast speed. An improved OMP algorithm has
been successfully applied to identifying the open-loop systems with multi-input finite im-
pulse response systems and multi-input controlled autoregressive systems with unknown
time-delays [16, 17]. Since the feedback is inherent in most dynamic systems, and in
many cases, it is not possible to remove it during an identification experiment, it is an
important work to extend the improved OMP algorithm to the closed-loop systems.

Briefly, the structure of this paper is as follows. Section 2 describes the identification
problem of the closed-loop system. Section 3 presents a threshold orthogonal matching
pursuit algorithm based on the compressed sensing theory. Section 4 provides a simulation
example to show the effectiveness of the proposed algorithm. Finally, some concluding
remarks are given in Section 5.

2. System Description. Consider a single input single output (SISO) closed-loop sys-

tem with large time-delays depicted in Figure 1, where u(t) and y(t) are the system input

and output, v(t) is a stochastic noise process with zero mean and variance o2, z=! is an

unit backward shift operator: [z 1y(t) = y(t — 1)], d; and dy are the time-delays of the
plant and the feedback controller, respectively, and A(z), B(z) and Q(z) are polynomials
in the operator 27! and are defined as

Alz)i =14 a1z +agz 2+ +ap, 27",
B(z)i=biz b4 byz 2 o by, 2,
Qz):=1+qz" + gz 4+ 4o,z "
Then the model of the closed-loop system can be described by
A(2)y(t) =2~ B(2)u(t) + v(?), (1)
u(t)=r(t) — 2~ 2Q(2)y(t)- (2)

Assume that the orders ng, ny, ng, the parameters a;, b;, ¢; and the time-delays d,, d, are
unknown.
Substituting Equation (2) into Equation (1), we have

A(2)y(t) =2""B(z) [r(t) — z_dQQ(z)y(t)} +v(t),
which follows that
[A(z) + z’dl*ng(z)Q(z)} y(t) = 2" B(2)r(t) + v(t).

v(t)

—_—

N

A(2)

2~ B(2)
A(z)

2 2Q(2)

FIGURE 1. An SISO closed-loop system
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Define
1(2)=B(2)Q(2) =12+ 2T,
az) = A(2) + 2~ BT B(2)Q(2)
=1ldaz 4 a2 A BT (g gy, )
where n., := ny, + n,. Then the model in (1) can be simplified as
a(2)y(t) = 27" B(2)r(t) + v(t). (3)

In general, the following assumptions are made to study the identification problem of the
closed-loop system [18]:

1. The external input r(¢) is stationary and persistently exciting of a sufficient order.
2. The noise v(t) is stationary, and independent of the external input.
3. The polynomials a(z) and B(z) are coprime.

The objective of this paper is to identify the coefficients of a(z) and B(z) from measurable
data {r(t),y(t),t = 1,2,---}, then to extract the parameter estimates of Q)(z) from the
estimated parameters, and also to estimate the system orders and time-delays.

3. Algorithm Description. The orthogonal matching pursuit (OMP), as a main CS
recovery algorithm, can be used to recover any K-sparse signal for the merits of its ease
of implementation and fast speed. In this paper, in order to reduce the estimation error
caused by the noise, a modified OMP algorithm — threshold orthogonal matching pursuit
(TH-OMP) algorithm is applied to estimate orders, time-delays and the parameters of the
control plant with a small number of observations, and the parameters of the feedback
controller will then be estimated by using the model equivalence principle.
Define the information vector ¢(t) and the parameter vectors 0 as

Lp(t) = [_y(t_ 1)7 T 7_y(t_na>a' o 7_y(t_ ll)ar(t_ 1)a e 7T<t_ 12)]T € Rlﬁ_b? (4)
0 = [ah... J Uy 0,0+ 0,79, 7%770707... ,0,by, - ,bnb’()’()?.._ ,O]T ER11+Z27 (5>
di+do—ng l1—d2—mn, lo—np—dy

where [; and [, are the maximum regression lengths of the input and output, satisfying
di+dy+n., <l and di+np < ly; o(t) is the information vector consisting of the regression
data; 0 is the parameter vector to be identified. Then Equation (3) can be written as

y(t) =@ ()0 + v(t). (6)

Taking m (m < l; + l2) consecutive observations and defining the stacked vectors

Y= [y(1),y(2),- - ,y(m)]" € R™,
®,,:=[p(1),0(2), -, pm)]" € Rmxit)
V= [0(1),0(2),- -+ ,v(m)]T € R™,
we have
Ym = q)mg + U, (7)
where ®,, € R™*(1+l) ig g known matrix whose columns are called the atoms in CS
(14, 15].
From (5), we can see that most of the entries in the parameter vector 6 are zero,
and only n, + n, + n, of them are non-zero. It means that the parameter vector 8 is

sparse, and the sparsity is K := ng + n, + n;. If there are enough measurements, i.e.,
m > l; + ls, according to the least squares principle, the least squares estimate of @ is

éLS = (<I>7T,L<I>m)71 @ﬁym. However, the dimension of 0 is [; + [, which is a large number.
Therefore, it will take a lot of time and effort to get enough measurements. In order to
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improve the identification efficiency, this paper aims to identify the parameter vector 6
using a small number of observations (K < m < l; +13) based on the CS recovery theory.

According to the CS recovery theory, the identification problem of the model in (7) can
be described as

6 =argmin |0y, s.t. |y, — Pl <,

where € > 0 is the error tolerance which is a chosen priori, and || - ||o counts the number
of non-zero entries in 6.

Let 0; be the 7th parameter in 8 and ¢, be the ith column of ®,,. £k =1,2,--- denotes
the iterative number; r; denotes the residual of the kth iteration; A\; denotes the number
of the selected column of ®,, in the kth iteration, let Ay = {\1, Ao, -+, \x} be the index
set and ®,, be the sub-information matrix which contains £ columns of ®,, indexed by
Ay

The procedure of the TH-OMP algorithm is given as the following steps [17].

1. Initialize: Let k =0, 7o = y,, and A, = 0); Given the error tolerance ¢.

< : l > ‘

3. Update the index set Ay and the sub-information matrix ®,, by
A =N U}, ®a, =Py, U,

AL = arg max
gk:LQ’...

4. Compute the kth parameter estimate éAk using
7 T -l ET
5. Set an appropriate small threshold £ to filter the parameter estimation éAk' If
‘9A5’ < &, let éAg = 0, where HAAs is the ith element of éAk. Denote éAk as éAkg after
filtering.
6. Compute the residual r, by
Te =Y, — @Aké/\kg.
7. If the residual r, < €, stop the iteration; otherwise return to Step 2.
8. Recover the parameter estimate @ from ® A

From (5), we can see that there are 3 non-zero blocks and 3 zero blocks in 6. The
numbers of entries of the non-zero blocks, orders, are the estimated orders n,, n, and ny,
respectively. And 7, can be estimated by n, = 7, — 7. Denote the numbers of zeros
of the zero blocks as z;, zo and z3. Based on the estimated orders n,, n, and n,, the
time-delays can be computed by

CZQZZQ_ZB_ﬁb, 0rci2:ll—ﬁ7—22, (8)
ch :Zl—i‘na—dQ. (9)
The parameter estimates a;, i = 1,--- , ny,, l;j, j=1,-- ,m,and 4, p=1,--- ,n, can

be directly read from the estimated parameter vector 6.
The following is to get the estimates of ¢, [ = 1,---,n,. According to the model
equivalence principle [19, 20], and from (3), we have

3(2) = B()Q(2)-

Assuming that n, > n,, and comparing the coefficients on both sides, we have

A A

S = 40,, (10)
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where
~ . A N . R . N . N . . R T
S = |92 — b2, %3 — b3, -~ y Tng+1 — bnq+177nq+2 - bnq+27 Uiy T bnb77nb+17’ynb+2a T 7/77%,] )
[ b 0 0 i
by by 0
bn, b@qq {71
bnq+1 bnq b2
~ N “ “ T ~ N
eq: [QI7QZ7"'7QRJ ) ’(p: A~ A~ A
lznbfl lznb*2 bnb ng
brALbfl Zznb72 bnb ng
bnb bTALb—l {)nb—l-l ng
0 bnb bnb+2 ng
L 0 0 bny—n,

Then éq can be computed by using the least squares principle,
AT ~\—1 AT 4
~(¢'%) @S (11)
4. Numerical Example. Consider an SISO closed-loop sysetm,
(1 —0.502"" +0.6272) y(t) =2"%4(0.8727 " — 0.952 *)u(t) + 1 — 0.50z~" + 0.60z>v(t),
u(t)=r(t) — 2" (1-1.262"") y(t).
Let Iy = 130 and [, = 80, and then the parameter vector 0 is

6 =[—0.50,0.60, 0117, 0.8700, —2.0462, 1.197, 073, 0.87, —0.95, 0,5] T € RI**2,

It is obvious that the dimension of 8 is 210, and the sparsity is K = 7. In simulation, the
external input {r(¢)} is taken as a persistent excitation signal sequence with zero mean
and unit variance, and {v(t)} as a white noise sequence with zero mean and variance
o? = 0.30%

Let m = 150, £ = 0.06 and by using the TH-OMP algorithm to estimate the parameter
vector é, we can get

Oc—0.06 = [~0.4968,0.5972, 0417, 0.8566, —2.0192, 1.1930, 073, 0.8533, —0.9743, 015]" € RI+2,
(12)
If we set £ = 0.01, then we can get

95:0,01 =[—0.4949,0.5973, 035, —0.0143, 031, 0.0224, 049, 0.8760, —2.0500, 1.2069,
056,0.0516, —0.0474, 0,5, 0.8569, —0.9924, 0,5]" € Ri**2,

From the above equation, we can see that there exist 4 undesirable parameter estimates
038, 970, «9179 and «9180, which are much smaller than other parameters. Based on the the
structure of 0 these 4 parameters are of little values and can be set to zeros. It implies
that & should be chosen as an appropriate small number, and even a too small number is
chosen, we can still obtain an effective estimate according to the structure of the sparse
parameter vector.

From (12), we can get the estimated orders and the numbers of zeros as

ha=2, fy,=3, fy=2 2 =117, 2 =713, z =13,

and n, can be computed by
Ng = Ny — T = 1.
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According to Equations (8) and (9), the time-delays can be estimated by
lel2—23—nb:64, CZQZZ1+na—d1:55.

According to Equation (8), we can obtain ¢; = —1.9999, It is obvious that the estimated
orders and time-delays are correct, and the parameter estimates are effective. Define
,'9 = [al, A2, 5 QAp,, bla b?a e 7bnb> q1,92, " 7qnq]T7

~

A A ~ T
9= Qai, Gz, " - 7ana7b17b2a"' 7bnb7Q17q27"' 7an:| )

2
and the relative parameter estimation error as § := (Hﬂ - 19” / H19H2) Applying the

proposed TH-OMP algorithm and the OMP algorithm to estimate the closed-loop system.
The parameter estimation errors § versus k are shown in Figure 2. From Figure 2, we
can see that the estimation accuracy of the TH-OMP algorithm is higher than that of
the OMP algorithm. The estimation error § versus k with different variances o = 0.302,
02 = 0.502 and 02 = 0.70? is shown in Figure 3. From Figure 3, we can see that the TH-
OMP algorithm is sensitive to noise, and a lower noise level leads to a better estimation
result.

0.8

OMP TH-OMP
DS
| | | | |
10 12 14 16 18 20

FIGURE 2. The estimation error § versus iteration k

9 10 11 12

FI1GURE 3. The estimation error ¢ versus k with variance
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5. Conclusions. In this paper, we studied the identification problem of a class of closed-
loop systems with large time-delays that the parameters and orders of both the control
plant and feedback controller are unknown, and the time-delays of both the forward
and backward channels are also unknown. The TH-OMP algorithm applied in the in-
direct identification framework can simply identify the parameters, the orders and the
time-delays with only a few iterations. The simulation results show that the algorithm
is effective. Moreover, for the over parameterized model, the proposed method requires
much smaller observations compared to conventional identification methods. In the fu-
ture, we aim to study more robust algorithms such as without setting a threshold &, and
for more complex systems models.
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