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Abstract. The objective function of the crisp transportation is Z =
∑m

i=1

∑n
j=1 cijxij.

The constraints are
∑n

j=1 xij = ai, i = 1, 2, · · · ,m,
∑m

i=1 xij = bj, j = 1, 2, · · · , n,
xij ≥ 0, i = 1, 2, · · · , m, j = 1, 2, · · · , n and

∑m
i=1 ai =

∑n
j=1 bj. We fuzzify cij to level

1 fuzzy numbers. Then we get fuzzy total cost and its centroid to represent the estimate
of total cost in the fuzzy sense. From the numerical implementation, it shows that the
proposed method is more practical and flexible.
Keywords: Fuzzy numbers, Level 1 fuzzy numbers, Centroid method, Transportation
problem

1. Introduction. In [3-6,9,15], they considered fuzzy transportation problems. They did
not use level (λ, ρ) interval-valued fuzzy number, 0 < λ ≤ ρ ≤ 1, to fuzzify. In [6], Chanas
and Kuchta also considered fuzzy transportation problem, they used fuzzy number of the
type L-L, c̃ij, to fuzzify the transportation cost cij in the objective function, and they
used λ-cut of c̃ij to derive interval cλ

ij. With interval cλ
ij as coefficient in the objective

function, they chose two points in cλ
ij to derive two objective functions. In this way, they

got transportation problem in the fuzzy sense. Based on [7,10-13,18], we use level 1 fuzzy
numbers to fuzzify objective function to obtain transportation problem in the fuzzy sense
in this paper. We think that to use level 1 fuzzy number is closer to the real situations.
Since the cost always fluctuates from certain value (crisp), a level 1 fuzzy number will
be a good way to describe this uncertainty. In Section 2, we give some preliminary on
crisp and fuzzy transportation problems and use centroid method to defuzzify. We give
example and compare the results under crisp case and fuzzy case in Section 3. In Section
4, we make the concluding remarks.

2. Fuzzy Objective Function. For the crisp transportation problem [17], we use i and
j to denote the ith origin and the jth destination, i = 1, 2, · · · ,m and j = 1, 2, · · · , n.
The production quantity at the ith origin is ai and the demand at the jth destination is
bj. Let cij be the transportation cost per unit commodity from the ith origin to the jth
destination.

Then we get the crisp transportation problem.

min Z =
m∑

i=1

n∑
j=1

cijxij (1)
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s.t.
n∑

j=1

xij = ai, ai > 0, i = 1, 2, · · · ,m (2)

m∑
i=1

xij = bj, bj > 0, j = 1, 2, · · · , n (3)

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (4)

For consistency, we have
m∑

i=1

ai =
n∑

j=1

bj (5)

ai, bj, cij, i = 1, 2, · · · ,m, j = 1, 2, · · · , n are known positive numbers. cij, i = 1, 2, · · · ,m,
j = 1, 2, · · · , n can be determined from monopolist. Using simplex method [1,15], we can
obtain the optimal solution.

Let the optimal solution be xij = x
(0)
ij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n. The trans-

portation cost per unit commodity from the ith origin to the jth destination cij in crisp
transportation problem (1)-(5) is a determined number. From (1)-(5), we have the optimal
transportation quantity xij, i = 1, 2, · · ·,m and j = 1, 2, · · ·, n. There are two problems
in this transportation plan.

(a) If the transportation plan executes only once and each cij, i = 1, 2, · · · ,m; j =
1, 2, · · · , n is fixed, then we do not need to consider the fuzzy case. If there are some
difficulties in determining cij or the transportation cost may vary, the transportation cost
per unit from the ith origin to the jth destination may lie in the interval [cij −∆1ij, cij +
∆2ij], where ∆1ij and ∆2ij will be determined by decision maker and 0 < ∆1ij < cij,
0 < ∆2ij. The decision maker will find an estimate in the interval [cij − ∆1ij, cij + ∆2ij].
How to find this estimate will be stated later.

(b) If the same transportation plan (i.e., ai, bj, ∀i, j are fixed) excutes many times in the
plan period T and in a perfect competitive market, cij is not the same in the plan period
T , and the transportation cost per unit from the ith origin to the jth destination may lie
in the interval [cij −∆1ij, cij + ∆2ij] as in (a), where ∆1ij and ∆2ij will be determined by
decision maker and 0 < ∆1ij < cij, 0 < ∆2ij.

For problems (a) and (b), it seems more practical that the decision maker changes cij (a
fixed value) to an interval [cij −∆1ij, cij +∆2ij]. If ∆1ij = ∆2ij = 0, the interval reduces to
a value cij. The decision maker wants to choose a value in this interval [cij−∆1ij, cij+∆2ij]
as the transportation cost per unit from the ith origin to the jth destination. If he chooses
cij, then it makes no difference with the crisp cost cij. There will be no error, i.e., the error
is 0. If the value is different from cij, then the error is larger as it deviates from cij farther.
The error will be the largest at the two endpoints cij −∆1ij and cij +∆2ij. From the fuzzy
point of view, we can transform the error to confidence level. The confidence level will be
the largest when the error is 0. We set it to be 1. In other words, the confidence level is
1 when we choose the crisp value cij. The confidence level is getting smaller as the value
we choose deviates from cij farther. The confidence level will be the smallest at the two
endpoints cij −∆1ij and cij + ∆2ij. In this case, we set the confidence level to be 0. From
the reasons above and below, corresponding to the interval [cij − ∆1ij, cij + ∆2ij], we set
the level 1 fuzzy number in (6) as shown in Figure 1.

c̃ij = (cij − ∆1ij, cij, cij + ∆2ij; 1) , 0 < ∆1ij < cij, 0 < ∆2ij (6)

i = 1, 2, · · · ,m, and j = 1, 2, · · · , n.
In Figure 1, The membership grade of c̃ij at cij is 1. In interval [cij − ∆1ij, cij +

∆2ij], the membership grade will be getting smaller when the number deviates from cij

farther. The membership grade will be zero at the two endpoints cij −∆1ij and cij +∆2ij.
The membership grade shares the same property as confidence level. Therefore, we can



ICIC EXPRESS LETTERS, VOL.10, NO.10, 2016 2455

Figure 1. Level 1 fuzzy number c̃ij

correspond membership grade to confidence level. The fact that we set level 1 fuzzy
number (6) to correspond to the interval [cij − ∆1ij, cij + ∆2ij] is reasonable.

Defuzzify c̃ij by the centroid method, and we have

c∗ij ≡ cij +
1

3
(∆2ij − ∆1ij) =

2

3
cij +

1

3
∆2ij +

1

3
(cij − ∆1ij) > 0

and c∗ij ∈ [cij − ∆1ij, cij + ∆2ij]. c∗ij can be used as an estimate for the transportation
cost per unit from the ith origin to the jth destination. When ∆1ij = ∆2ij, c∗ij = cij.
Then the estimate of the transportation cost c∗ij in the fuzzy sense is the same as the crisp
transportation cost cij. That means fuzzy case will contain the crisp case.

Then we have the following transportation problem in the fuzzy sense.

min Z̃ =
m∑

i=1

n∑
j=1

c̃ijxij (7)

s.t.
n∑

j=1

xij = ai, ai > 0, i = 1, 2, · · · ,m (8)

m∑
i=1

xij = bj, bj > 0, j = 1, 2, · · · , n (9)

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (10)
m∑

i=1

ai =
n∑

j=1

bj (11)

Remark 2.1.
∑m

i=1

∑n
j=1 c̃ijxij means that

((x̃11)1 ⊙ c̃11) ⊕ ((x̃21)1 ⊙ c̃21) ⊕ · · · ⊕ ((x̃m1)1 ⊙ c̃m1) ⊕ ((x̃12)1 ⊙ c̃12) ⊕ · · · ⊕
((x̃m2)1 ⊙ c̃m2) ⊕ · · · ⊕ ((x̃1n)1 ⊙ c̃1n) ⊕ · · · ⊕ ((x̃mn)1 ⊙ c̃mn)

Property 2.1. When we fuzzify cij in crisp transportation problem (1)-(5), we have fuzzy
transportation (7)-(11). Then we get the transportation problem in the fuzzy sense.

min MZ =
m∑

i=1

n∑
j=1

cijxij +
1

3

m∑
i=1

n∑
j=1

(∆2ij − ∆1ij)xij (12)

s.t.
n∑

j=1

xij = ai, ai > 0, i = 1, 2, · · · ,m (13)
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m∑
i=1

xij = bj, bj > 0, j = 1, 2, · · · , n (14)

xij ≥ 0, i = 1, 2, · · · , m, j = 1, 2, · · · , n (15)
m∑

i=1

ai =
n∑

j=1

bi (16)

Proof: Since xij ≥ 0, ∀i = 1, 2, · · · ,m, j = 1, 2, · · · , n, then from (6), we have Z̃ =(∑m
i=1

∑n
j=1(cij − ∆1ij)xij,

∑m
i=1

∑n
j=1 cijxij,

∑m
i=1

∑n
j=1(cij + ∆2ij)xij; 1

)
. Defuzzify Z̃

by the centroid method, and we have MZ =
∑m

i=1

∑n
j=1 cijxij +

1

3

∑m
i=1

∑n
j=1(∆2ij −

∆1ij)xij. This is the objective function in the fuzzy sense, i.e., (12).

Remark 2.2. The method for solving the optimal solution for the transportation problem
in Property 2.1 is the same as the crisp transportation problem. When ∆2ij = ∆1ij,
i = 1, 2, · · · ,m, j = 1, 2, · · · , n, c̃ij is symmetric with respect to cij. Then Property 2.1
reduces to the crisp transportation problem (1)-(5).

The meaning of Property 2.1 is that when we fuzzify cij to c̃ij (in (7)), the cij in

objective function (7) should be replaced by the estimate c∗ij ≡ cij +
1

3
(∆2ij − ∆1ij)

through defuzzification by centroid.

3. Example. In this section, we give an example to implement Property 2.1.
Case 0: Crisp transportation problem.
A company has two factories F1 and F2 and three retail warehouses W1, W2 and W3.

The production quantities per month for F1 and F2 are 10 tons and 8 tons respectively.
The demands for W1, W2 and W3 are 5 tons, 6 tons and 7 tons. The transportation costs
per unit are c11 = 16, c12 = 15, c13 = 25, c21 = 19, c22 = 24 and c23 = 12. We obtain the
following crisp transportation problem.

min Z = 16x11 + 15x12 + 25x13 + 19x21 + 24x22 + 12x23

s.t. x11 + x12 + x13 = 10

x21 + x22 + x23 = 8

x11 + x21 = 5

x12 + x22 = 6

x13 + x23 = 7

xij ≥ 0, i = 1, 2, j = 1, 2, 3

We can rewrite the constraints as follows.

x21 = 8 − x22 − x23

x11 = 5 − x21 = −3 + x22 + x23

x12 = 6 − x22

x13 = 7 − x23,

where xij ≥ 0, i = 1, 2; j = 1, 2, 3.
We can change this linear programming problem with 6 variables to an equivalent linear

programming with two variables.
Substituting these into the objective function, we get Z = 369 + 6x22 − 16x23.
Then we have

min Z = 369 + 6x22 − 16x23

s.t. 0 ≤ x22 ≤ 6,
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0 ≤ x23 ≤ 7,

x22 + x23 ≤ 8,

x22 + x23 ≥ 3

The optimal solution is that x11 = 4, x12 = 6, x13 = 0, x21 = 1, x22 = 0, x23 = 7 and
minimal cost is Z = 257 (≡ Z0).

Note: We can also use linear programming solver (e.g., LINDO) to solve it.
Case 1: Property 2.1.
Let c̃11 = (16−1, 16, 16+2; 1), c̃12 = (15−1, 15, 15+0.5; 1), c̃13 = (25−1, 25, 25+2; 1),

c̃21 = (19−2, 19, 19+3; 1), c̃22 = (24−0.5, 24, 24+3.5; 1) and c̃23 = (12−1, 12, 12+1.5; 1).
From Property 2.1, (12)-(16) we get

min MZ = 16.333x11 + 14.833x12 + 25.333x13 + 19.333x21 + 25x22 + 12.167x23

s.t. x11 + x12 + x13 = 10

x21 + x22 + x23 = 8

x11 + x21 = 5

x12 + x22 = 6

x13 + x23 = 7

xij ≥ 0, i = 1, 2, j = 1, 2, 3

Alternatively, we rewrite the constraints x21 = 8− x22 − x23, x12 = 6− x22, x13 = 7− x23

and x11 = 5 − x21 = −3 + x22 + x23, where xij ≥ 0, i = 1, 2, j = 1, 2, 3.
We can change the linear programming problem with six variables to an equivalent

linear programming with two variables.
Substituting these constraints into the objective function, we get MZ = 371.994 +

7.167x22 − 16.166x23. Therefore, we have

min MZ = 371.994 + 7.167x22 − 16.166x23

s.t. 0 ≤ x22 ≤ 6,

0 ≤ x23 ≤ 7,

x22 + x23 ≤ 8,

x22 + x23 ≥ 3

The optimal solution is that x11 = 4, x12 = 6, x13 = 0, x21 = 1, x22 = 0, x23 = 7 and
minimal cost is MZ = 258.832 (≡ Z1).

We can also use linear programming solver (e.g., LINDO) to solve it.

The comparison between case 0 and case 1 is
Z1 − Z0

Z0

× 100% = 0.71%.

4. Conclusions. We made some comments about this paper as follows.
(A) From the example implementation in Section 3, we have that the relative error

between the crisp case and our proposed level 1 fuzzy number method is very small. We
can show that the proposed method is more practical and flexible.

(B) If the transportation plan executes only once and without statistical data in the
past, we use Property 2.1, i.e., the estimate of the crisp cost cij should be changed to
cij + 1

3
(∆2ij − ∆1ij) which is the estimate in the fuzzy sense.

(C) The future research can be extended to a more general case, i.e., the cost is a level
(λ, 1) interval-valued fuzzy numbers or apply signed distance method to defuzzifying and
comparing the results.
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