
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 10, October 2016 pp. 2459–2466

A NOVEL UNSUPERVISED CONVOLUTIONAL NETWORK
BASED ON GABOR AND (2D)2PCA FOR FEATURE EXTRACTION

AND RECOGNITION

Ruru Lu1, Min Jiang1, Jun Kong1,2, Shengwei Tian2

and Yilihamu Yaermaimaiti2

1Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)
Jiangnan University

No. 1800, Lihu Avenue, Wuxi 214122, P. R. China
minjiang@jiangnan.edu.cn

2College of Electrical Engineering
Xinjiang University

No. 14, Shengli Road, Urumqi 830046, P. R. China

Received March 2016; accepted June 2016

Abstract. Feature extraction and recognition are challenging tasks in computer vision,
especially for distortion data. As an effective method of feature extraction, two-directional
two-dimensional Principal Component Analysis ((2D)2PCA) has been widely used for its
good performance. However, features extracted by (2D)2PCA essentially are low-level
and sensitive to distortions. To solve this problem, a new unsupervised deep learning
network is proposed in this paper. It is based on a convolutional structure and can ex-
tract more useful multi-level features. In the proposed new network, 2D Gabor filters
and (2D)2PCA simply denoted as GB(2D)2PCA are applied to learning the multi-stage
convolutional filters, which overcomes the drawbacks of convolutional networks. Further-
more, binary hashing and block-wise histograms are used to compute output features,
and the obtained output features are used to train Linear Support Vector Machine (Lin-
earSVM) for recognition. Finally, face recognition is applied to verifying the effectiveness
of the proposed network. And the effectiveness of feature extraction and recognition is
demonstrated by experiments on several benchmark databases including distortion data.
Keywords: Deep learning networks, Convolutional networks, GB(2D)2PCA, Feature
extraction

1. Introduction. Feature extraction is the core work for improving quality and efficiency
of an algorithm in computer vision tasks (e.g., face recognition, object recognition and
image segmentation). Traditional hand-crafted feature extraction methods, such as SIFT,
HOG and LBP, have been used in specific tasks. However, hand-crafted features are
always low-level and almost depended on prior knowledge. It is difficult to take advantage
of big data and be used in new tasks without learning new domain knowledge. Therefore,
feature extraction and recognition are still challenging tasks in computer vision.

Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) [1] are
two classical techniques widely used in computer vision. Fisherface and Eigenface [2] are
two famous face recognition methods based on those two techniques. Nevertheless, most
of the LDA-based methods have the small sample size problem. Besides, PCA-based
methods previously transform the 2D matrices into 1D vectors, which often results in a
high-dimensional vector space. Two-directional two-dimensional PCA ((2D)2PCA) [3], as
a variation of PCA, usually learns more expressive features and is more computationally
efficient. However, (2D)2PCA is sensitive to distortion caused by illumination, pose and
expression. Moreover, (2D)2PCA could only capture low-level features, which cannot
represent more abstract semantics of data.
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Recently, it has been paid wide attention to deep learning for its ability of feature learn-
ing. Generally speaking, deep learning is composed of multiple stacking processing layers
to automatically learn representations of data with multiple levels of abstraction, which
remedies the limitation of hand-crafted features [4]. It brings dramatic improvements in
many domains. For instance, with stacking Restricted Boltzmann Machines (RBMs) [5],
Deep Neural Networks (DNNs) perform much better than traditional neural networks.
One of the most representative deep architectures is Convolutional Networks (ConvNets)
[6], which is more suitable for image-related tasks. In ConvNets, each stage comprises a
convolutional filters layer, a nonlinearity layer and a feature pooling layer. However, for
one thing, ConvNets obtain excellent results only if their architecture is deep enough; for
another, although GPU is used to accelerate, it also leads to high computation to train
such a deep network by using Stochastic Gradient Descent (SGD) in supervised mode.
Variations of ConvNets have been proposed in the past few years. Several variations,
including sparse coding [7] and convolutional versions of RBMs [8], employ unsupervised
learning methods to pre-train in each stage and SGD method to fine-tune, which reduce
the number of labeled data and achieve good performance on several vision tasks.

The initial motivation of our research is to reduce apparent differences between (2D)2P-
CA and ConvNets. Inspired by the mentioned works above, in this paper, we employ very
basic operations to emulate the processing layers in a typical ConvNets: (2D)2PCA is se-
lected as the convolution filters in each stage; simple binary hashing is chosen as the
nonlinear layer; block-wise histograms of the binary codes are used as the feature pooling
layer, which is considered as the final output features. The proposed multi-stage network
is named as (2D)2PCANet. Compared with the traditional feature extraction method
of (2D)2PCA, our feature extraction method is a multi-stage unsupervised convolutional
network, which ensures the extracted features are more beneficial to represent abstract
semantics of the data. It also should be noted that our unsupervised convolutional net-
work does not need to learn convolutional filters by iteration, which overcomes the draw-
backs of ConvNets. Moreover, in order to further increase the robustness of (2D)2PCA
features against distortion, we replace the (2D)2PCA filters with GB(2D)2PCA filters
which are learned by 2D Gabor feature extraction method along with (2D)2PCA, called
GB(2D)2PCANet. For the best reason that Gabor can optimally localize in the space
and frequency domains [9], we conduct experiments on several benchmark databases to
verify the effectiveness of GB(2D)2PCANet, and the results demonstrate the effectiveness
of our multi-stage network for feature extraction and recognition.

The rest of work is organized as follows. Section 2 describes the proposed network.
Section 3 presents experimental results and analysis. Section 4 concludes the paper.

Figure 1. The framework of the proposed GB(2D)2PCANet
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2. GB(2D)2PCANet. Different from other deep learning models mentioned above, the
proposed network is composed of several feature extraction stages and one nonlinear
output stage. To extract more discriminative features, output maps of all cascaded feature
extraction stages serve as the input of the nonlinear output stage, which is the main
difference with others. In the feature extraction stage, GB(2D)2PCA is used to learn
the convolutional filters. Original inputs convoluted with the learned convolutional filters
produce a set of feature maps, which serve as inputs to the next feature extraction stage.
Next, the outputs of all cascaded feature extraction stages are used as the inputs of
nonlinear output stage. Then, in nonlinear output stage, binary hashing and block-wise
histograms, instead of (Rectified Linear Unit) ReLU function and Max-Pooling [6], are
employed to compute the final features. Finally, the final output features are sent to train
Linear Support Vector Machine (LinearSVM) classifier for recognition. Figure 1 shows
the proposed network with two feature extraction stages and one output stage. Given N
input training images {Ai}N

i=1, each image size is p × q. Then, we describe each stage
precisely.

2.1. The first feature extraction stage. The characteristics of 2D Gabor filters are
invariance to scale, translation and less sensitive to distortion in illumination, expression
and noise [9]. Thus, the Gabor filters are chosen to represent the original input images.
In the spatial domain, 2D Gabor filters are acquired by modulating a Gaussian kernel
function with a sinusoid plane wave, defined as [10]:
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f 2

πγη
exp
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(
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where x
′
= x cos θ + y sin θ, y

′
= −x sin θ + y cos θ, f is the central frequency of the filter,

γ and η correspond to the two perpendicular axes of the Gaussian, and θ is the rotation
angle.

In order to extract useful features from images, a group of Gabor filters with different
scales and orientations is usually required. GB(2D)2PCANet gets feature images by using
forty Gabor filters with five scales and eight orientations. In our method, we set γ =
η =

√
2. Since adjacent pixels are generally highly correlated, we reduce information

redundancy by downsampling the feature images with a factor of d = 4 [10]. For the i-th
input image Ai, we define the corresponding feature matrix as B i ∈ Rs×t, where s = p×q

d2

is the number of pixels after downsampling and t = 40 is the number of Gabor filters. As
a result, the whole feature matrix {B i}N

i=1 can be obtained for all input images {Ai}N
i=1.

To some extent, local receptive fields and shared weights in ConvNets ensure invariance
to shift, distortions and scale [6]. Inspired by the architecture, by taking an l1×l2 patch of
the i-th feature image B i at every b = 1 pixel, we can obtain m×n patches for each feature
image, where m is ⌈ s−l1

b
⌉+1 and n is ⌈ t−l2

b
⌉+1. All the patches form a matrix denoted as

b i = [b i,1, b i,2, . . . , b i,mn], where b i,j indicates the j-th patch in B i. Inspired by the idea
of local contrast normalization [11], we subtract the mean of each patch and obtain matrix
b̄ i = [b̄ i,1, b̄ i,2, . . . , b̄ i,mn] ∈ Rl1×mnl2 , where b̄ i,j is the j-th mean-removed patch in b i. By
assembling b̄ i after all feature images {B i}N

i=1 are constructed in the same way, we form
a large matrix: I = [b̄1,1, . . . , b̄1,mn, b̄2,1, . . . , b̄2,mn, . . . , b̄N,1, . . . , b̄N,mn] ∈ Rl1×Nmnl2 . For
convenient description, we rewrite I as the concatenation of vectors with successive index,
i.e., I = [Ī 1, Ī 2, . . . , Ī k, . . . , ĪNmn]. Here, Ī k is the j-th mean-removed patch in image
B i, k = (i − 1) × m × n + j.

Compared with PCA, (2D)2PCA can learn more features. Furthermore, it is more
efficient in computation. The reasons depend on two aspects. One is that (2D)2PCA uses
image matrix to construct the covariance matrix directly. The other is that it is employed
in the direction of the row and column simultaneously [3]. Thus, we use (2D)2PCA to
select the most discriminative features of the Gabor space ulteriorly.



2462 R. LU, M. JIANG, J. KONG, S. TIAN AND Y. YAERMAIMAITI

Suppose N1 is the number of the convolutional filters in the first stage. For each l1×l2
patch Ī i, from the row direction of patch Ī i, we project Ī i onto X l2×N1(N1≤l2) by:
E = Ī iX∈Rl1×N1 . And the row covariance matrix Grow is given by:

Grow =
1

Nmn

∑Nmn

i=1
(Ī i − Ī )T

(
Ī i − Ī

)
, (2)

where Ī = 1
Nmn

∑Nmn
i=1 Ī i is the mean image of all training images. It has been verified that

the optimal projection axis X̂ is composed by the orthonormal eigenvectors X 1, . . . ,XN1

of Grow, corresponding to the N1 largest eigenvalues, X̂ = [X 1, . . . ,XN1 ].
Similarly, from the column direction of patches, we project Ī i onto Y l1×N1(N1≤l1) by:

F = Y T Ī i∈RN1×l2 . And the column covariance matrix is given as follows:

Gcol =
1

Nmn

∑Nmn

i=1

(
Ī i − Ī

) (
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)T
. (3)

The optimal projection axis Ŷ = [Y 1,Y 2, . . . ,Y N1 ], where Y i shows the orthogonal
eigenvectors of Gcol corresponding to the N1 largest eigenvalues.

Then, we denote W 1
n = Y nX

T
n∈Rl1×l2 as the learned convolutional filters in the first

stage, where n = 1, 2, . . . , N1. In the first stage, for each original input Ai, the outputs
of the n-th filter are:

I n
i = Ai∗W 1

n∈Rp×q, i = 1, 2, . . . , N, (4)

where ∗ is 2D convolution. I n
i is convolutional output of the i-th image Ai with the n-th

filter. Before convolution, to make I n
i with the same size of Ai, the boundary of Ai is

padded with zero. For each input Ai, N1 feature maps {I n
i }n=1,2,...,N1 are produced in the

first stage.

2.2. The second feature extraction stage. For all input images {Ai}N
i=1, the outputs

of the first stage {I n
i }n=1,2,...,N1,i=1,2,...,N are used as the original input to the second stage.

Like the first stage, after the operation of Gabor filters and downsampling, the output
of the i-th image with the n-th filter in the first stage I n

i is further converted into the
corresponding feature matrix Z n

i . By collecting all patches of Z n
i and subtracting the

mean of each patch, Z̄ n
i =
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n
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n
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]
∈ Rl1×mnl2 is formed, where Z̄

n
i,j is

the j-th mean-removed patch in Z n
i . Then, by constructing all the outputs from the

n-th filter {I n
i }n=1,2,...,N in the same way, all mean-removed patches are further collected

and Z n =
[
Z̄

n
1 , Z̄

n
2 , . . . , Z̄

n
N

]
∈ Rl1×Nmnl2 is defined. Finally, by concatenating all the

vectors in Z n for all the filter outputs, Z =
[
Z 1,Z 2, . . . ,ZN1

]
∈ Rl1×Nmnl2N1 is obtained.

Suppose N2 is the number of the convolutional filters in the second stage. Repeat the
same process as the first stage, we can compute the outputs of the n2-th filter in the
second stage:

Onn2
i = I n

i ∗W 2
n2
∈Rp×q, (5)

where n2 = 1, 2, . . . , N2, O
nn2
i is the convolutional output of I n

i with the n2-th filter in the
second stage. For each original input Ai, N1×N2 feature maps {Onn2

i }n=1,2,...,N1,n2=1,2,...,N2

are produced in the second stage. The above process can be simply repeated in the same
way if more feature extraction stages are needed.

2.3. The output stage: Binary hashing and block-wise histograms. In the second
stage, each input image I n

i produces N2 outputs. We binarize these N2 outputs by
H(Onn2

i ), where the value of H(·) is one for positive inputs and zero for other input cases.
The binary bits at the same pixel location in all the N2 output maps compose a binary

vector, which can be viewed as a decimal number. Then, one can obtain an integer-valued
image H n

i by the following formula:

H n
i =

∑N2

n2=1
2n2−1H (Onn2

i ), (6)



ICIC EXPRESS LETTERS, VOL.10, NO.10, 2016 2463

where 2n2−1 is weight for the N2 binary bits.
Each integer-valued image H n

i , n = 1, 2, . . . , N1, is parted into K blocks (each block
size is [b1 b2]), which can be either overlapping (the block overlap ratio is α) or non-
overlapping. In each block, the histogram is calculated by using the decimal values. By
concatenating all the K histograms, one can drive a vector denoted as Bhist (H n

i ). After
above encoding processing, a group of block-wise histograms:[

Bhist
(
H 1

i

)
, . . . , Bhist

(
H N1

i

)]
are the final features of the input image Ai.

Eventually, the final output features of the GB(2D)2PCANet are sent to train Lin-
earSVM classifier for recognition.

The parameters of GB(2D)2PCANet include the number of stages, the patch size l1,
l2, the number of filters in each stage N1, N2, the block size for local histograms in the
output stage b1, b2 and the block overlap ratio α.

3. Experiments. In the following experiments, we apply two-stage (two feature extrac-
tion stages) GB(2D)2PCANet to several benchmark databases, such as XM2VTS, ORL
and AR. The multi-stage network whose convolutional filters are pre-fixed is inspired
by (2D)2PCA. Therefore, (2D)2PCA with LinearSVM classifier and the nearest neighbor
(NN) classifier will be employed for comparison to verify the effectiveness of the multi-
stage network. (2D)2PCANet will also be discussed to check the effect of Gabor in the
GB(2D)2PCANet. For a fair comparison, all experimental configurations keep fixed and
all images are converted to grayscale map. The following experimental results show that
two-stage GB(2D)2PCANet leads to excellent results in many ways.

3.1. Insensitivity to the training sample size. In this part, several experiments are
conducted on XM2VTS and ORL databases to study the effect of the training sample
size. XM2VTS contains 295 subjects. Each subject provides 8 different images. Images
are cropped to 55 × 51. ORL includes 40 subjects. Each subject provides 10 different
images. Images are resized to 32× 32. We randomly select S (S = 2, 3, 4, 5, 6, 7) samples
of each class as training samples, and the rest are used for testing. We take the patch size
l1 = l2 = 5, the number of filters in each stage N1 = N2 = 5, the block size b1 = b2 = 7,
the block overlap ratio α = 0.5 on XM2VTS and l1 = l2 = 7, N1 = N2 = 5, b1 = b2 = 5,
α = 0.5 on ORL.

The experimental results are given in Figure 2. Based on two databases, one can see
that (2D)2PCA with LinearSVM classifier outperforms NN classifier. The reason is that
NN classifier is not discriminative enough to well select the relevant samples. Besides,

Figure 2. Recognition rate of different methods under different training samples
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compared with (2D)2PCA, multi-stage networks proposed in this paper perform better
for the deep architectures, which can learn more abstract and more hierarchical features.
Meanwhile, GB(2D)2PCANet yields better performance than (2D)2PCANet obviously,
demonstrating the effectiveness of Gabor. Moreover, from Figure 2(a), it keeps perfect
performance even though only 3 training samples are selected for each class on XM2VTS.
Thus, we can draw a conclusion that GB(2D)2PCANet is less-sensitive to the number of
training samples.

3.2. Insensitivity to distortion in illumination, expression and occlusion. In this
section, we conduct experiment on AR databases to study the effect of the distortion. AR
includes over 4000 images from 126 subjects. These images contain different illumination,
expression and occlusion conditions. Each subject has 26 images in two sessions. Each
section has 13 images. The second session has the same conditions as the first session.
In this experiment, we choose a subset of the database consisting of 50 males and 50
females. All images are resized to 60 × 43. For all images of each subject, images of
neural expression and frontal illumination in the first session are selected as the training
samples. The rest 19 images are used as test set T. We further divide T into four test
sets according to the possible variations, namely Exps (expression), Illum (illumination),
Occlus (occlusion) and Illum+Occlus (illumination-plus-occlusion). We take l1 = l2 = 4,
[N1 N2] as [3 4], [b1 b2] as [3 2] and α = 0.7.

Table 1 lists the results of different methods. The experimental results are consis-
tent with those on XM2VTS and ORL datasets: GB(2D)2PCANet outperforms other
methods on all test sets. Obviously, when there exists occlusion, the performance of
(2D)2PCA decreases significantly because (2D)2PCA is sensitive to distortion. However,
GB(2D)2PCANet overcomes the drawback and is more effective in dealing with distor-
tion. It incorporates the virtues of Gabor filters, that is, less sensitive to distortion in
illumination, expression and noise. Especially, we examine the performance of Gabor with
LinearSVM. Obviously, Gabor has played a large role in the robustness against expression,
illumination and occlusion.

Table 1. Recognition rates of different methods on AR. The numbers in
bold denote the best assessment value.

Test sets Illum Exps Occlus Illum+Occlus T

Gabor+LinearSVM 96.67% 95.25% 91.00% 97.13% 91.16%
(2D)2PCA+NN 77.67% 67.25% 18.75% 20.62% 39.05%

(2D)2PCA+LinearSVM 87.33% 86.00% 27.50% 23.87% 47.74%
(2D)2PCANet 100% 99.00% 98.25% 96.63% 98.00%

GB(2D)2PCANet 100% 99.50% 99.00% 97.38% 98.47%

3.3. Impact of parameters. Next, the impacts of two parameters of GB(2D)2PCANet
to the recognition performance are examined on XM2VTS, ORL and AR databases. One
is the block size for local histograms b1, b2. The other is the block overlap ratio α.
Besides, in order to examine the influence of b1, b2 on robustness against image occlusion,
the Occlus test set of AR is tested. Figure 3 indicates the relationship between the values
of parameters and the recognition rates.
Impact of the block size: The block size [b1 b2] is varied from [3 3] to [15 15] and
other parameters are fixed. From Figure 3(a), in general, the recognition rates decrease
when the block size [b1 b2]>[7 7] on the three databases. Moreover, on Occlus test set of
AR, GB(2D)2PCANet achieves excellent results when the block size tends to be small.
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Figure 3. Recognition rates with the changing parameters

Therefore, we can draw a conclusion that small block size is less sensitive to occlusion
and suggest that the value of the block size is less than or equal to [7 7].
Impact of the block overlap ratio: To examine the effect of the block overlap ratio α,
we vary α from 0.1 to 0.9 while other parameters are fixed. From Figure 3(b), the biggest
difference between the highest and lowest recognition rates is only 0.5% on ORL. Thus,
GB(2D)2PCANet is quite insensitive to α.

4. Conclusion. In this paper, a novel unsupervised deep convolutional network is pro-
posed for feature extraction and recognition, which can extract more useful multi-level
features. The network is composed of two feature extraction stages and one nonlinear
output stage. The outputs of all cascaded feature extraction stages are used as the in-
put of nonlinear processing stage, which is the main difference with other deep learning
networks. In each feature extraction stage, GB(2D)2PCA is used to learn convolutional
filters, which overcomes the drawbacks of convolutional networks. In nonlinear output
stage, binary hashing and block-wise histograms are employed to compute output fea-
tures, which are sent to train LinearSVM for recognition. Experimental results have
shown that GB(2D)2PCANet with two feature extraction stages is quite effective for
feature extraction and recognition. In the future, we plan to apply ensemble learning
approaches to our feature extraction method for dealing with much larger databases.
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