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Abstract. The depth maps captured by consumer RGB-D cameras are usually degraded
by noise, low resolution, missing values, etc. This paper presents a novel depth recovery
method to improve the spatial resolution and quality of initial depth map. Our solution is
based on an image guided multi-point filtering framework. Different from the conventional
point-wise filtering, the estimates are calculated for all observation pixels in the multi-
point filtering. Firstly, we calculate the depth estimates of pixels in an adaptive support
region with a piecewise constant model. The adaptive support region is determined based
on the distance preserving domain transform technology guided by the color image. Then
a number of such estimates are aggregated together by a weighted averaging strategy to
acquire final depth estimates. By quantitative and qualitative experiments on publicly
available test sequences, we demonstrate the capabilities of our method on the depth
recovery task.
Keywords: Depth recovery, Guidance image, Multi-point filtering

1. Introduction. A depth map represents the distance of each point to a reference cam-
era and can be used in many applications such as 3DTV, new view rendering, and robot
vision. The high quality and resolution depth maps are required in these applications.
However, there exists at the moment no depth map generation technique that is able to
produce a perfect depth map. For instance, the depth maps obtained by a ToF (time
of flight) range sensor, ‘Mesa Imaging SR4000’, are of low resolution (176 × 144) and
noisy. Due to this limitation, the subject of depth recovery has been extensively studied.
Usually there are different recovery methods to address different aspects of depth map
corruption such as low spatial resolution, noise, blur edge, holes, and low accuracy. In this
paper, we focus on the improvement of the spatial resolution and accuracy of non-ideal
low resolution and noisy depth map.

In filtering-based methods, joint bilateral filtering (JBF) is widely used and may work
well, because it can preserve the discontinuity of up-sampled depth map with the help
of the accompanied color image. However, one challenging problem of the JBF is its
high computational complexity. In recent years, several methods enable joint bilateral
filtering to be computed at constant time or even video rate by modifying the model
or using GPU implementation [1, 2, 3]. The guided image filtering (GF) was proposed
recently [4] and has demonstrated its unique advantage over JBF in some applications
such as stereo matching and HDR (high dynamic range) compression [4, 5, 6]. Due to
the linear model and using integral image technique, the guided filtering runs much faster
than JBF method. According to [7], GF is essentially a multi-point estimator which
calculates the estimates of all observation pixels, compared with the point-wise estimator
JBF which calculates the estimate of a single pixel only. However, GF has a fixed-sized
square filter window and simply averages for multi-estimate which may generate fuzzy
object boundaries in the depth recovery task. An example is shown in Figure 1.

2479



2480 L. LI, Y. ZHAO, X. SHEN AND C. ZHANG
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(d) (e) (f)

Figure 1. An example: Detail crop of recovered Teddy (the square win-
dows in Figure 2), (a) and (d) Truth depth map, (b) and (e) results of GF,
(c) and (f) results of our method

Motivated from the above researches, we proposed a new depth recovery method based
on a image guided multi-point filtering model, as the expansion of the guided filtering.
Different from GF, our multi-point filtering has an adaptive window and a weighted
average for multiple estimates, which makes our method potential to give better results.
To decide the adaptive support region, the domain transforming technique [8] is used
here. The transform enables the 2D filtering to be performed using a sequence of 1D
filters, which lowers computational and memory costs compared with conventional 2D
filters. The key contribution of this paper is to integrate domain transforming technique
into multi-point filtering and finish depth map recovery efficiently and effectively. This
paper is the revised version of our previous research [9] with no public release.

The remainder of this paper is organized as follows. Section 2 describes our proposed
depth map recovery method. Then Section 3 presents objective and subjective experi-
mental results. Finally, Section 4 gives our conclusions.

2. Depth Map Recovery. Given a depth map D, our goal is to improve its spatial
resolution and quality using aligned high resolution color image I. The resulting recovered
depth map at the same resolution of I is denoted as J .

2.1. Algorithm overview. First we upscale the raw depth map to the same size as
color image by bilinear interpolation. The interpolated depth map Dini is not reliable.
Then an adaptive multi-point filtering is performed to improve its quality. The multi-
point filtering includes the following steps. Firstly, for each pixel p, a set of four varying
support arm lengths is decided, which is based on the image guided domain transforming
technique. Once such four arm lengths of each pixel p are decided, an adaptive support
region Ωp is available. Secondly, we use the piecewise constant model to compute multi-
point estimates Jk

s for a set of points s ∈ Ωk. For a pixel p in the support region Ωk, it then
has an estimate Jk

p . And a pixel p is generally covered by multiple support regions and

has a number of multi-point estimates
{
Jk

p |p ∈ Ωk

}
. Finally, the multi-point estimates

are fused by a weighted averaging strategy to obtain the output Jp for each pixel p.

2.2. Adaptive support region. With the help of aligned color image, we use the domain
transforming technique to decide for each direction an appropriate arm length of each
pixel p in the initial depth map Dini. So they jointly delineate an adaptive support region
Ωp. The domain transform recently presented [8] is a dimensionality reduction technique,
which is a distance-preserving transform and exists for a 1D domain. For a 1D signal
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I embedded in 2D (x, I(x)) space, a transformation t : R2 → R preserves L1 distance
between two neighboring pixels in the original domain R2 and in the new dimensionality
reduction domain R, which is expressed as

gt(x + h) − gt(x) = h + |I(x + h) − I(x)| (1)

where gt(x) = t(x, I(x)) represents the transformation operator at pixel x, and h is the
sampling interval. After the derived strategy presented in [8], the values at any pixel u in
the new domain can be computed by

gt(u) =

∫ u

0

1 +
σs

σr

|I ′(x)|dx (2)

where σs and σr control the influence of spatial and intensity range information respec-
tively similar to the bilateral filtering. For multichannel signal such as a RGB color image
I embedded in 4D (x, IR, IG, IB) space, the transformation t : RC+1 → R can be expressed
as

gt(u) =

∫ u

0

1 +
σs

σr

C∑
k=1

|I ′
k(x)|dx (3)

where Ik is the k-th channel of signal I, and C is the number of channels.
Unfortunately, for a 2D image signal, there exists no such transformation in general as

described in [8]. In this work, we use 1D transform to perform 2D filtering. That is, for
a 2D color image I, the horizontal and vertical passes are conducted for each row and
column using Equation (3) respectively. The constant radius r is adopted based on the
transformed values to decide which pixels are included in the support region, and then
horizontal and vertical arm lengths of each pixel p in initial depth map Dini are derived.
It is worth noting that the radius is constant in new domain, but a space-varying and non-
symmetric radius in original domain, in which its size changes according to the similarity
between two neighboring pixels in 4D (x, IR, IG, IB) space. Once the four arm lengths are
decided for each pixel p, an adaptive filter support region Ωp can be defined as an area
integral of multiple horizontal segments H(q). That is expressed by Ωp =

∪
q∈V (p) H(q),

where q is a pixel located on the vertical segment V (p) of pixel p. Obviously the adaptive
support region Ωp only includes pixels belonging to the same population as p to support
multi-point filtering described below.

2.3. Multi-point filtering. After a pixel-wise adaptive support region Ωp for each pixel
p is given, we use a multi-point filtering similar to the method presented in the paper
[10] to perform depth map recovery. For the multi-point filtering, the output depth is
supposed to be a linear transformation of the guidance color image. For a pixel p in an
adaptive support region Ωk centered at a pixel k, its output depth Jk

p can be expressed as

Jk
p = aT

k Ip + bk (4)

where p ∈ Ωk, Ip is a 3 × 1 RGB components vector of pixel p, ak is a 3 × 1 coefficient
vector, and ak and bk are constant parameters corresponding to the support region Ωk.
The parameters ak and bk can be computed by minimizing the difference between the
output value Jk

i and input Di
ini of each pixel i in the support region Ωk. [10] has proven

that a lower-order fitting model can help depth recovery task without causing blurry
boundaries as the guided image filtering does. As the extension of GF, the piecewise
constant model is used here to fit data between guidance color image and initial depth
map. Then the parameter ak is set to zero and the above equation is reduced to

Jk
p = bk (5)

Similar to GF, the window parameter bk can be determined by minimizing differences
between input image Dini and output image J . It has been proven that bk can be expressed
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as

bk =
1

|Ωk|
∑
s∈Ωk

Ds
ini (6)

where |Ωk| is the number of pixels in Ωk. It is worth noting that the multi-point filtering
is used here to calculate an estimate Jk

s for all pixels in support region, i.e., s ∈ Ωk, which
is contrast to the pixel-wise filtering that gives the central pixel estimate only.

Then we can apply the linear transformation model to all the support regions in the
entire image. However, a pixel p is often involved in different support regions that contain
p and have different window parameters. It is hence a number of different estimates{
Jk

p |p ∈ Ωk

}
for each pixel p. Taking the confidence of each estimate into account, we use

the weighted averaging to compute the final output by

Jp =

∑
k:p∈Ωk

wkJ
k
p∑

k:p∈Ωk
wk

(7)

where wk is the relative weight for each estimate Jk
p . As the adaptive support region is

intended to involve similar pixels with the central pixel, we set the number of pixels in
support region as its corresponding weight. So the fusion equation is rewritten as

Jp =

∑
k∈Ωp

|Ωk|Jk
p∑

k∈Ωp
|Ωk|

(8)

Note that, for more easily data process and computation, we have modified the sum-
mations of Jk

p for k : p ∈ Ωk in Equation (7) into those for k ∈ Ωp in Equation (8).
This is an approximate transformation which may not always hold. With this modifica-
tion, about four O(1) time multiple estimates fusion over 2D adaptive support region are
needed in the constant model by using the integral image technique. By combining the
domain transform with multi-point filtering, initial depth map can be enhanced exactly
and efficiently by our proposed method.

3. Experimental Results. To validate the effectiveness and efficiency of the proposed
method, we evaluate our method through various experiments. The performance was
compared with the JBF-based method and the GF-based method which represent the top
performances. For the three algorithms, we use our own Matlab implementation using
the Intel Core i3 CPU, 2.3GHZ PC. We perform experiments using ground truth depth
maps provided by the Middlebury test bed [11, 12].

We evaluate the performance of up-sampling low resolution depth maps firstly. The low
resolution depth maps are generated by down-sampling the ground truth disparity maps.
The down-sampling ratio is set to 8. The low resolution depth maps are firstly up-sampled
to the same size as high resolution color image by bilinear interpolation. The interpolated
depth maps are called initial depth maps and then recovered by our proposed method. For
optimal results, our parameters are set: σs = 10, σr = 0.2, and window radius r =

√
3σs.

The results of our method compared with the JBF-based and the GF-based method are
given in Figure 2 and Figure 1. The JBF-based and the GF-based methods perform the
joint bilateral filtering and the guided filtering on initial depth map respectively. In order
to fairly compare performances of filtering-based three methods, we adopt the same initial
depth maps. The other parameters of two compared methods are adjusted to acquire the
optimal results. From the figures, we can see that the proposed method yields superior
results over the two compared methods, especially in discontinuity and occluded areas.
The objective evaluation of these methods is shown in Table 1. The accuracy is evaluated
by measuring the percent of bad pixels (where the absolute disparity error is greater than
1) for V is. (visible pixels in the image) and Dis. (near discontinuity area) pixels.
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(a) (b) (c) (d)

Figure 2. Depth up-sampling results for “Tsukuba, Venus, Teddy and
Cones”: (a) The initial depth maps, (b) JBF-based method results, (c)
GF-based method results, (d) Our method results

Table 1. Objective evaluation for recovered results

Tsukuba Venus Teddy Cones
Methods V is. Dis. V is. Dis. V is. Dis. V is. Dis.
INITIAL 14.50 48.74 2.38 41.49 18.10 57.02 18.34 57.04

JBF-BASED 16.25 32.73 0.98 12.85 14.35 40.92 13.48 44.53
GF-BASED 18.88 42.92 1.79 23.78 20.86 53.09 18.27 55.49
PROPOSED 13.02 27.00 0.46 8.26 11.51 37.68 10.65 38.66

Figure 3. Depth recovered results in a noisy environment for “Tsukuba,
Venus, Teddy and Cones”: the first row is the noisy initial depth maps and
the last row is recovered results by our method.
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It is worth noting that the process time of our method is close to that of the GF-based
method, which runs much faster than the JBF-based method. The execution time of
our method is independent of the window radius r, which makes the algorithm scalable
for higher resolution images in future application. Furthermore, our method gains bet-
ter results than the GF method due to adopting an adaptive support region, weighted
averaging process and a piecewise constant fitting model.

Lastly denoising performance of our proposed method is evaluated. The down-sampled
depth maps are added additive white Gaussian noise with a mean of 0 and variation
20. Then the proposed method is performed on the noisy initial depth maps and results
are shown in Figure 3. We found that the proposed method may provide accurate high
resolution depth maps even in a noisy environment.

4. Conclusions. In this paper, we have presented a novel approach for low resolution
and noisy depth map recovery. As an extension to the guided filtering, our method adopts
an adaptive support region and weighted averaging for multi-estimate fusion. The color
image guided domain transformation is used to set up the adaptive support region and
can be efficiently computed by a series of 1D filters. So the computational complexity of
our method does not depend on the filtering size, which fits for processing high resolu-
tion images. The proposed method is efficient and effective for depth recovery confirmed
by experimental results. However, the same as the other filtering-based methods, our
proposed method only uses local information for depth recovery task and may blur dis-
continuity when the noise of initial depth map is high, such as outdoor images. In future
work, we will implement the proposed method with GPU for real-time performance. And
we are also interested in combining it with the global optimal algorithm to improve its
performance further.
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