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Abstract. Differential evolution (DE) is an efficient algorithm for solving optimization
problems in a continuous space. In recent years, many studies have reported modification
and improvement for DE. Rank-based DE (RDE) is one of the modified DE algorithms,
which allocates different control parameter values for each individual based on the rank-
ing information in the current population. We attempt to improve the search ability of
RDE by using an eigenvector-based (EIG) crossover. The EIG crossover is a rotationally
invariant operator which provides superior performance on non-separable problems. In
the EIG crossover, population is rotated to an appropriate coordinate system, and then a
crossover operator is executed on the rotated population. In this paper, the performance
of the RDE with EIG crossover is evaluated on the basic benchmark functions. Through
the experiments, we show that the EIG crossover can enhance the search ability of RDE.
Keywords: Differential evolution, Crossover, Rotationally invariant

1. Introduction. Differential evolution (DE) [1] is one of the most powerful global nu-
merical optimization algorithms in the field of evolutionary algorithm. It has been success-
fully applied to various standard benchmark problems and has found several real-world
applications. However, the performance of DE mainly depends on mutation strategies
and crossover operators and their associated control parameters (i.e., population size NP,
scaling factor F , and crossover rate CR). Due to this, much research has been conducted
to analyze the effects of these control parameters and proposed various parameter adap-
tive DE variants [2, 3, 4]. Most of them use the binomial crossover operator. However,
rank-based DE (RDE) [5], which is one of the adaptive parameter controlling methods,
uses the exponential crossover. Rank-based DE (RDE) assigns different F and CR for
each individual by taking into account the diversity-convergence balance using ranking
information in the current population.

In DE algorithm, the mutation operation is rotation invariant but the binomial crossover
and the exponential crossover with CR ̸= 1 are not rotationally invariant. The perfor-
mance of DE with both crossover operators is sensitive to rotation on the coordinate
system, which represents highly correlated parameters in real-world optimization prob-
lems [6, 7]. Due to this, the rotationally invariant arithmetic recombination operator is
proposed [8, 9]. However, the pure arithmetic recombination approaches may lose the
diversity of population, and suffer from the problem of premature convergence.

To deal with this problem, the eigenvector-based (EIG) crossover operator is proposed
as an alternative crossover [6]. The EIG crossover utilizes eigenvectors of covariance ma-
trix of individual solutions, which makes the crossover rotationally invariant. To avoid
losing diversity of population, the eigenvector-based ratio P is introduced as a new con-
trol parameter, which determines the ratio of the EIG crossover operator and the other
crossover operator. In [6], the binomial crossover operator was replaced with the EIG
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crossover in original DE algorithm, and it could significantly improve the performance
of DE. Additionally, the EIG crossover can be applied to any crossover strategy with
minimal changes.

In this paper, we incorporate the EIG crossover to the RDE/rand/exp algorithm and
therefore introduce a new algorithm, the RDE with eigenvector-based crossover (RDE-
EIG). Moreover, by applying the concept of RDE, we propose a control scheme of pa-
rameters P based on the ranking information. This paper is organized as follows. A brief
description of the DE algorithm is given in Section 2. Section 3 describes the eigenvector-
based crossover operator. In Section 4, we present the proposed RDE with the eigenvector-
based crossover operator. In Section 5 we present the results of experiment. Finally, the
conclusion is given in Section 6.

2. Differential Evolution. DE is one of the variants of evolutionary algorithms that use
a population. Similar to other evolutionary algorithms, DE searches for a global optimum
in the search space with a population of vectors

x⃗i,G = {x1,i,G, x2,i,G, . . . , xD,i,G}, i = 1, 2, . . . , NP (1)

where G denotes the current generation, D is the dimension of the search space, and NP
is the population size. In generation G = 0, the jth component of the ith vector can be
initialized as

xj,i,0 = xj,min + randi,j[0, 1] · (xj,max − xj,min) (2)

where randi,j[0, 1] is a uniform random number on the interval [0, 1], and xj,min, xj,max are
the prescribed minimum and maximum bounds of the jth dimension, respectively. After
initialization, DE employs the mutation and crossover operations to produce a trial vector
for each target vector x⃗i,G in the current population. The main procedure of DE is briefly
explained in the following subsections.

2.1. Mutation. In mutation, DE creates a mutant vector vi = (vi1, vi2, · · · , viD) for each
target vector xi by certain mutation strategy. Some well-known mutation operations are
listed as follows.

“rand/1”:

v⃗i,G = x⃗r1,G + F (x⃗r2,G − x⃗r3,G) (3)

“best/1”:

v⃗i,G = x⃗best,G + F (x⃗r2,G − x⃗r3,G) (4)

“current-to-best/1”:

v⃗i,G = x⃗i,G + F (x⃗best,G − x⃗i,G) + F (x⃗r2,G − x⃗r3,G) (5)

In the above equation, x⃗best,G is the best individual in the current population, and the
indices r1, r2 and r3 are distinct integers uniformly chosen from the set {1, 2, · · · , NP} \
{i}. The parameter F is called the scaling factor, which is a positive real number.

2.2. Crossover. After mutation, DE generates a trial vector u⃗i,G = {u1,i,G, u2,i,G, . . . ,
uD,i,G} by crossover operation to increase the potential diversity of the population. The
commonly used crossover operators in DE are the binomial (bin) crossover and the ex-
ponential (exp) crossover [1]. In the crossover, CR is the crossover rate within the range
[0, 1) and presents the probability of generating genes for a trial vector from a mutant
vector. Exponential crossover involves representational bias (dependence of ordering of
parameters within a vector) [10]. In this paper, we modify exponential crossover to shuf-
fled exponential crossover [11] by the following operation. First, the variable indices of the
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parents are randomly shuffled. Next, exponential crossover is applied to the shuffled pa-
rameter vectors. Finally, the indices are restored to their pre-shuffled. By this operation,
the representational bias can be eliminated.

2.3. Selection. The selection operator is performed to select a better one from the tar-
get vector x⃗i,G and the trial vector u⃗i,G according to their fitness values f(·). For a
minimization problem, the vector with the lower objective function value survives the
next generation, which can be expressed as follows:

x⃗i,G+1 =

{
u⃗i,G if f(u⃗i,G) < f(x⃗i,G)
x⃗i,G otherwise

(6)

where f(·) is the objective function to be optimized.
The stopping criterion for the DE in general is usually the generation number or the

number of objective function evaluations.

3. Eigenvector-Based Crossover Operator. The EIG crossover operator makes the
binomial crossover operator become a rotationally invariant operator by rotating the coor-
dinate system to a proper one [6]. In each generation, we compute the covariance matrix
of the population, and decompose the matrix into a set of eigenvectors.

The covariance between the ith and jth dimensions of the population in the Gth gen-
eration is defined as

cov(i, j) =

NP∑
k=1

(xi,k,G − x̄i,k,G)(xi,j,G − x̄i,j,G)

NP − 1
(7)

where x̄i,G = (1/NP )
∑NP

k=1 xi,k,G denotes the mean value of the variables in the ith di-
mension. The covariance matrix CG can be defined in terms of the covariance as

CG = (ci,j, ci,j = cov(i, j)) (8)

To compute the eigenvector basis, we factorize the covariance matrix QG into a canonical
form as

CG = QGΛG(QG)−1 (9)

where QG is the square matrix (D × D) whose ith column is the eigenvector q⃗i,G of CG

and ΛG is the diagonal matrix whose diagonal elements are the corresponding eigenvalues.
The factorization of a matrix into a canonical form is called eigen decomposition.

In the eigenvector basis, the ith target vectors x⃗i,G can be expressed by (QG · x⃗i,G);
the ith mutant vectors can be expressed by (QG · v⃗i,G). Then, some of the elements of
the mutant vector v⃗i,G will be exchanged with some of the elements of its target vector
to form a trial vector by a predefined crossover operator, such as binomial crossover or
exponential crossover. The trial vector is given by

ui,j =

{
Q∗

G · xover(QG · x⃗i,G,QG · v⃗i,G), if randi[0, 1] ≤ P

xover(x⃗i,G, v⃗i,G), otherwise
(10)

where Q∗
G is the conjugate transpose of the eigenvector basis QG, and xover

(
a⃗, b⃗

)
is a

crossover operator on two vectors a⃗ and b⃗, where P is an eigenvector ratio between 0%
and 100% to determine the ratio of the eigenvector-based crossover operator and the other
crossover operator.
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4. RDE with Eigenvector-Based Crossover Operator. The rank-based DE (RDE)
is one of the DE variants that adopts an observation-based control of algorithm parame-
ters. In RDE, different parameter values are assigned based on goodness of base vector.
When the base vector is good, a small scaling factor and a large crossover rate are selected
and convergence is realized. Also, when the base vector is bad, a large scaling factor and
a small crossover rate are selected and the divergence is realized.

At the beginning of each generation, the ranks Ri of the individual vectors x⃗i,G are
given according to the fitness. First, the population is sorted in ascending order (i.e.,
from the best to the worst) based on the fitness of each individual. Then, the ranking of
a vector is assigned as Ri = i (i = 1, 2, · · · , NP ), where the best vector in the current
population will obtain the highest ranking (Ri = 1). Before mutation, different values of
F and CR are assigned to each target vector according to the rank of the base vector.
Let a target vector be denoted by x⃗i,G , the base vector be denoted by x⃗r1,G and the rank
of the base vector be denoted by Rr1. The scaling factor Fi and the crossover rate CRi

for x⃗i,G can be defined by the following equations:

Fi = Fmin + (Fmax − Fmin)
Rr1 − 1

NP − 1
(11)

CRi = CRmax − (CRmax − CRmin)
Rr1 − 1

NP − 1
(12)

where Fmin, Fmax are parameters to specify the minimum and maximum values of F , and
CRmin, CRmax are parameters to specify the minimum and maximum values of CR. If
the base vector is the best individual, F becomes the minimum value and CR becomes
the maximum value. If the base vector is the worst individual, F becomes the maximum
value and CR becomes the minimum value.

In this paper, we incorporate the EIG crossover to the RDE algorithm and there-
fore introduce a new algorithm, the RDE with eigenvector-based crossover (RDE-EIG).
The strategy of RDE-EIG is RDE/rand/1/exp (eigenvector-based mixed with exponential
crossover). After the parameter assignment, mutant vector is generated by Equation (3).
Then, EIG crossover is performed by Equation (10) and trial vector is generated.

As described in Section 3, new algorithm parameter P is introduced in the EIG crossover.
The performance of DEs with EIG crossover is dependent on the selection of P , which
makes a great impact on the population diversity. To preserve the diversity of population
and prevent premature convergence, the EIG crossover requires a suitable setting of P .
For this reason, we attempt to automatically adjust P during the search in RDE-EIG.
Here we propose a control scheme for parameter P based on the ranking information.
Similar to F and CR, the eigenvector ratio Pi for x⃗i,G can be defined by the following
equations:

Pi = Pmax − (Pmax − Pmin)
Rr1 − 1

NP − 1
(13)

where Pmin, Pmax are parameters to specify the minimum and maximum values of P . When
the base vector is of a higher rank, the eigenvector basis is used with a high probability
to guide the evolution process toward more successful solutions. In contrast, when the
base vector is of a lower rank, the natural basis is used in order to increase the population
diversity.

5. Experiment.

5.1. Setup. In this section, we evaluate the performance of RDE-EIG on the benchmark
functions. The mathematical formulas and properties of these functions are shown in
Table 1, where dimension D = 40. All functions are chosen for the minimization problems
and their optimal values are all 0.
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Table 1. Benchmark functions

Name Expression Domain

F1: Sphere f(x) =
D∑

i=1

x2
i [−5.12, 5.12]D

F2: Ellipsoid f(x) =
D∑

i=1

(
1000

i−1
D−1 x2

i

)
[−5.12, 5.12]D

F3: Ackley f(x) = 20 − 20 exp
(
−0.2

√
1
D

∑D
i=1 x2

i

)
[−32.768, 32.768]D

+ e − exp
(

1
D

∑D
i=1 cos(2πxi)

)
F4: Griewank f(x) = 1 +

D∑
i=1

x2
i

4000
−

D∏
i=1

(
cos

(
xi√

i

))
[−512, 512]D

F5: Rastrigin f(x) = 10D +
D∑

i=1

x2
i − 10 cos(2πxi) [−5.12, 5.12]D

F6: Schaffer f(x) =
D−1∑
i=1

(
x2

i + x2
i+1

)0.25

[−100, 100]D

×
{

sin2
(
50

(
x2

i + x2
i+1

)0.1
)

+ 1
}

F7: Ridge f(x) =
D∑

i=1

 i∑
j=1

xj

2

[−64, 64]D

F8: Rosenbrock (chain) f(x) =
D−1∑
i=1

{
100

(
xi+1 − x2

i

)2 + (xi − 1)2
}

[−2.048, 2.048]D

F9: Rosenbrock (star) f(x) =
D∑

i=2

{
100

(
x1 − x2

i

)2 + (xi − 1)2
}

[−2.048, 2.048]D

To investigate the effect of the EIG crossover on RDE, we run RDE-EIG with fixed
P and RDE-EIG with proposed control scheme for P for each function. The parameters
settings for RDE-EIG are as follows – the population size NP = 80, Fmin = 0.5, Fmax =
1.0, CRmin = 0.1, CRmax = 1.0. Each algorithm was run 20 times and the maximum
generation is Gmax = 105. If the DE algorithm can reach an error value, defined as
(f(x) − f(x∗)) where x∗ is the global optimum of f , less than ε = 10−7 then we assume
it has found the global optimum and stopped the DE.

5.2. Results. Figure 1 shows the result of RDE-EIG in each function as P is varied over
the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Note that P = 0 means original RDE
(RDE/rand/1/exp). Here, the plots are averaged number of function evaluations (NFE)
required for finding the global optima. When the solution search failed even once, there
are no plots in the figure.

In separable unimodal functions (F1 and F2) and multimodal functions with small peaks
and valleys (F3 and F4), as the P increases, the performance of RED-EIG is gradually
improved. In contrast, in multimodal functions with large peaks and valleys (F5 and F6),
large P value significantly degrades the search ability of RDE-EIG. For non-separable
unimodal functions (F7, F8, and F9), we can see that P = 0.4 or P = 0.5 is a suitable
value. These characteristics of P in eigenvector-based mixed with exponential crossover
are similar to the experimental results of eigenvector-based mixed with binomial crossover
mentioned in [6]. From these results, EIG crossover with adequate setting of P can en-
hance the search ability of RDE/rand/1/exp by making the crossover process rotationally
invariant.
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Figure 1. The average NFE of RDE-EIG with different P s

Table 2. The average NFE of RDE-EIG with various combinations of Pmin

and Pmax

Pmin, Pmax

Function [0, 0] [0, 0.5] [0, 1.0] [0.5, 1.0]

F1: Sphere
7.90E+04 6.68E+04 5.44E+04 5.00E+04

[20] [20] [20] [20]

F2: Ellipsoid
8.19E+04 6.87E+04 5.66E+04 5.24E+04

[20] [20] [20] [20]

F3: Ackley
1.51E+05 1.30E+05 1.09E+05 1.00E+05

[20] [20] [20] [20]

F4: Griewank
1.04E+05 8.79E+04 7.16E+04 6.64E+04

[20] [20] [20] [20]

F5: Rastrigin
1.78E+05 1.92E+05 2.22E+05 3.64E+05

[20] [20] [20] [20]

F6: Schaffer
4.76E+05 5.42E+05 6.57E+05 –

[20] [20] [20] [7]

F7: Ridge
3.41E+05 2.54E+05 2.46E+05 2.98E+05

[20] [20] [20] [20]

F8: Rosenbrock (chain)
4.43E+05 3.59E+05 3.56E+05 4.22E+05

[20] [20] [20] [20]

F9: Rosenbrock (star)
3.67E+05 2.17E+05 1.83E+05 2.03E+05

[20] [20] [20] [20]
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Next, Table 2 shows the average NFE of RDE-EIG with control scheme for P . In this
experiment, we investigate several combinations of Pmin and Pmax. Note that Pmin = 0
and Pmax = 0 means original RDE. For each function, the average NFE required to find
the global optima when an algorithm solves the problem with 100% success rate is shown
in the top row. The number of success runs is shown in the bottom row. Except for F5

and F6, each combination of Pmin and Pmax demonstrates relatively better performance.
In particular, for F1-F4, the combination of Pmin = 0.5 and Pmax = 1.0 is suitable. For F7-
F9, the combination of Pmin = 0.0 and Pmax = 1.0 is suitable. However, the combination
of Pmin = 0.5 and Pmax = 1.0 failed to find the global minimum in F6. Consequently, it
seems that the relatively large Pmin may lead to the premature convergence for complex
multimodal functions.

6. Conclusion. We have introduced a new DE algorithm, namely, the RDE-EIG, which
extends the RDE with the eigenvector-based crossover operator. In the EIG crossover, new
algorithm parameter, called eigenvector ratio P , is introduced and it affects significantly
the performance of DEs. Therefore, we proposed a control scheme for P based on the
concept of RDE. In the original paper of the EIG crossover [6], binomial crossover was
employed and the effectiveness was shown through the numerical simulations. In the
paper, we combined exponential crossover with an eigenvector-based crossover operator
on RDE algorithm. From the experimental results using basic benchmark functions,
we confirmed that the EIG crossover with an adequate setting of P can enhance the
search ability of RDE/rand/1/exp, except multimodal functions with large peaks and
valleys. Due to this, not only binomial crossover, the mixing of exponential crossover and
eigenvector-based crossover is also effective. Finally, for our future work, we will try to
improve the control scheme for P by taking into account landscape modality during the
search.
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