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Abstract. With the development of new systems, demands for analyzing and process-
ing corresponding properties such as security are growing rapidly. As a kind of powerful
tool, traditional automata cannot meet these demands without development. Thus, secure
finite automaton is put forward so that security properties can be coped with. Equiva-
lence of secure finite automata is defined based on the secure bisimulation. Algorithms for
determinizing and minimizing a secure finite automaton are given with proofs of correct-
ness and analyses of the worst case time complexity. The application of these algorithms
shows that this development is very useful.
Keywords: Secure finite automaton, Equivalence, Determinization, Minimization

1. Introduction. As the basis of computer science and technology [1, 2], automata have
wide applications such as image analysis [3]. According to determinacy, automata can
be roughly divided into two classes: deterministic finite automaton (DFA) and non-
deterministic finite automaton (NFA). Traditionally, a DFA is equivalent to an NFA if
they accept the same language. However, different views may come from different do-
mains. In [4], Milner gave an example of a coffee/tea vending machine. In this example,
one is deterministic and the other is non-deterministic, as shown in Figure 1(a) and Figure
1(b) respectively. They are equivalent in the sense of accepted languages. However, when
a purchaser who needs a cup of coffee puts in two pounds (denoted by 2p in Figure 1), the
NFA (Figure 1(b)) may change to the state s2 in which only a cup of tea can be offered
and the purchaser has no choice but the tea. This case will never occur in the DFA (Fig-
ure 1(a)). Language equivalent automata behave so differently because determinism and
non-determinism of internal actions can affect interactions while traditional equivalence
has no consideration of this point. Thus, Milner proposed the concepts of bisimulation
and weak bisimulation in [4]. Weakly bisimular systems have the same language, not vice
versa.

With the development of new systems especially interactive systems of electronic com-
merce, security is becoming more and more important. In [5], Liu and Jiang found that
security policy can affect interacting behaviors and that better security policies make sys-
tems securer. Weak bisimulation cannot explain their findings because weak bisimulation
does not take into consideration the effect of external actions on systems. Therefore,
in the same work, Liu and Jiang proposed secure bisimulation as an extension of weak
bisimulation for interactive systems. They modeled systems with a labeled Petri net with
insecure places (LPNIP) and used the reachability graph of an LPNIP to define a labeled
transition system with insecure states (LTSIS).

In [6], Zhang and Wu proposed an algorithm for minimizing bounded Petri nets. Their
algorithm calls traditional algorithms to determinize and minimize a labeled transition
system (LTS) of a labeled Petri net (LPN). If the same algorithms are applied to an LPNIP
directly, incorrect results will be arrived at. For example, Figure 2 shows two LPNIPs: p2
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Figure 1. Milner’s example
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Figure 2. Two LPNIPs
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Figure 4. Minimal DFAs

and p4 are insecure places in LPNIP1 and p4 is an insecure place in LPNIP2. Obviously
these two LPNIPs are not securely bisimular. Figure 3 shows corresponding LTSISs: p2
and p4 are insecure states in LTSIS1 and p4 is an insecure state in LTSIS2. However,
the same minimization results (Figure 4) are produced. It means minimal DFAs of the
LTSISs are securely bisimular for reflexivity, contrary to the fact that the LTSISs are not
securely bisimular. The reason for this incorrectness is that traditional automata and
algorithms for determinization and minimization cannot meet the demand of changes.
Although new automata and algorithms for minimization are constantly emerging [7,
8], to the best of our knowledge, none of them takes security into account. To address
this problem, secure finite automaton, as an extension of traditional automata, is put
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forward with the equivalence and algorithms for determinization and minimization. With
secure finite automaton, systems, especially security, involved can be modeled directly
and models such as LPNIP and LTSIS can be minimized correctly in consideration of
secure bisimulation. Furthermore, the comparison of security levels [5] among different
systems especially using minimal models can arrive at correct results.

2. Preliminary. An NFA is denoted by N and a DFA is denoted by D. Both NFA
and DFA are called finite automaton (FA) denoted by A. The language of A denoted
by L(A) is the set of all sentences recognized by A. Two finite automata A1 and A2

are equivalent if L(A1) = L(A2). Note that the above equivalence is fully based on the
languages accepted by automata. Thus, this kind of equivalence is often referred to as
language equivalence. The process to convert an NFA to an equivalent DFA is called
determinization. One classical determinization algorithm is the subset construction (i.e.,
the power set construction). A DFA is the minimal DFA among equivalent deterministic
finite automata if no other equivalent DFA has less states. The minimal DFA is denoted by
DFAmin or Dmin. The process to convert a DFA to a minimal DFA is called minimization.
Two kinds of algorithms can be used to minimize a DFA. One is the split algorithm such
as Hopcroft’s with the worst time complexity O(n log n) [9]. The other is Brzozowski and
Tamm’s double reversal algorithm with the exponential time complexity as the worst case
[10]. For more details about FA, please refer to [1, 2, 10].

LPNIP differs from the classical Petri net [11] in that some places of LPNIP are insecure
and these insecure ones have no effect on the rules of enabling and firing transitions.
LTSIS is based on the reachability graph of an LPNIP and provides the basis of secure
bisimulation. Let (QS ∪ QU , Act, T r) be an LTSIS, where QS is the set of secure states
and QU is the set of insecure states. Binary relation B ⊆ ((QS ∪QU)× (QS ∪QU)) is a

secure bisimulation if: (1) B is symmetric; (2) if (q, r) ∈ B and q
ϵ→ q′, then there exists

r′ such that r
ϵ r′ and (q′, r′) ∈ B, where ϵ can be omitted and q1

ϵ→ q2
ϵ→ · · · ϵ→ qn is

denoted by q1
ϵ qn; (3) if (q, r) ∈ B and q

a→ q′, then there exists r′ such that r
a r′

and (q′, r′) ∈ B, where q1
ϵ qn

a→ qn+1 is denoted by q1
a qn+1; (4) if (q, r) ∈ B and

q ∈ QU , then r ∈ QU . For more details about secure bisimulation, please refer to [5].

3. Secure Finite Automaton and Equivalence.

Definition 3.1. A secure deterministic finite automaton (SDFA, denoted by DS) is a
7-tuple: (Q,Σ, S, λ, δ, s0, F ), where Q is a finite and non-empty set of states, Σ is a finite
alphabet, S is either secure denoted by 1 or insecure denoted by 0 (i.e., S = {0, 1}), λ is
a label function: Q→ S, δ is a transition function: Q×Σ → Q, s0 is the only one initial
state and s0 ∈ Q, and F is a finite set of final states and F ⊆ Q.

An SDFA labels its states as secure and insecure. Any state of an SDFA has at most one
outgoing arc for any label a ∈ Σ. For example, Figure 5 shows two secure deterministic
finite automata corresponding to Figure 3. If all states of Q are secure, an SDFA is a
traditional DFA in essence. Therefore, traditional DFA can be viewed as a special case
of SDFA.

Definition 3.2. A secure non-deterministic finite automaton (SNFA, denoted by NS) is
a 7-tuple: (Q,Σ, S, λ, δ, I, F ), where Q is a finite and non-empty set of states, Σ is a
finite alphabet, S is either secure denoted by 1 or insecure denoted by 0 (i.e., S = {0, 1}),
λ is a label function: Q→ S, δ is a transition function: Q×Σ ∪ {ϵ} → P (Q), I is a set
of initial states and I ⊆ Q, and F is a finite set of final states and F ⊆ Q.

SDFA and traditional NFA are special cases of SNFA. Figure 7 shows an example of
SNFA. Both SDFA and SNFA are called secure finite automaton (SFA) denoted by AS .
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Figure 5. SDFAs

b

b

s0
a

as1

s2

s3

b

a

a

b

b

s4

s5

b

a

a

(a) DFA1

b

b

s
′

0

a
as

′

1

s
′

2

s
′

3

b

a

a

b

b

s
′

4

s
′

5

b

a

a

(b) DFA2

Figure 6. DFAs
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AS without insecure states (resp. insecure states or arcs labeled with ϵ) can be used to
model systems for the purpose of weak bisimulation (resp. bisimulation).

Definition 3.3. Two secure finite automata AS1 and AS2 are security equivalents iff AS1

and AS2 are securely bisimular.

Based on the definition above, similar equivalence can be defined: two secure finite
automata AS1 and AS2 which have no insecure states (resp. insecure states or ϵ) are
equivalent in the sense of weak bisimulation (resp. bisimulation) iff AS1 and AS2 are
weakly bisimular (resp. bisimular). AS1 and AS2 are language equivalents if AS1 and AS2

are (securely, weakly) bisimular, not vice versa.

Definition 3.4. An SFA is called the minimal secure finite automaton (MSFA, denoted
by ASmin) if it has the least number of states regardless of whether secure or insecure
among security equivalent secure finite automata.

Similarly, An SFA without insecure states (resp. insecure states or ϵ) is called the
minimal secure finite automaton in the sense of weak bisimulation (resp. bisimulation) if
it has the least number of states among equivalent secure finite automata in the sense of
weak bisimulation (resp. bisimulation).

4. Determinization and Minimization. With secure bisimulation in view, an SNFA
cannot be determinized in principle because internal deterministic and non-deterministic
actions can affect interactions. The elimination of non-determinism cannot retain the
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(weak, secure) bisimulation relation. For example, if Figure 1(b) is determinized as Figure
1(a), automata before and after determinization (i.e., Figure 1(b) and Figure 1(a)) are
not (weakly, securely) bisimular. Even so, the following purpose based algorithm gives a
general framework to determinize an SFA including any traditional FA.

Algorithm 1: Determinization of a secure finite automaton

Input: a secure finite automaton AS and a purpose
Output: a DFA for a purpose of language equivalence or AS if an SDFA for a

purpose of bisimulation, otherwise null
1 if (language equivalence purpose) then
2 if (there exist insecure states) then
3 for (each insecure state p) do
4 λ(p) = 1; /* label all insecure states as secure */

5 end
/* the modified SFA is still denoted by AS */

6 end
7 AS is converted to a language equivalent FA A = (Q,Σ, δ, I, F );
8 A is determinized by algorithms such as the subset construction and the result is

denoted by D;
9 return D;

10 end
11 if ((weak, secure) bisimulation purpose) then
12 if (AS is deterministic) then
13 return AS ;
14 else
15 return null;
16 end
17 end

Proposition 4.1. Algorithm 1 outputs the correct result of determinization.

Proof: This algorithm outputs a result according to the purpose for which the result
will be used. For the purpose of traditional language equivalence, this algorithm (lines
2-6) changes all insecure states into secure states which coincide with states of traditional
finite automata in form. This change does not affect the language equivalence. Then
this algorithm (line 7) removes those components which have no relation to traditional
algorithms for determinization. This operation does not affect states or arcs and has
no effect on the language equivalence. Thus, this algorithm converts an SFA AS to a
language equivalent FA A. As a traditional FA, A can be determinized by traditional
algorithms such as the subset construction. The correctness of traditional algorithms for
determinization has been proved in [1, 2]. Therefore, Algorithm 1 outputs a correct DFA
for the purpose of language equivalence. For the purpose of (weak, secure) bisimulation,
Algorithm 1 outputs the original AS if it is deterministic. Otherwise, Algorithm 1 returns
null which is right in the sense of (weak, secure) bisimulation because the elimination of
non-determinism has effect on (weak, secure) bisimulation.

It follows from the above that Proposition 4.1 holds.

Proposition 4.2. The worst case time complexity of Algorithm1 is O
(
2|Q|).

Proof: Algorithm 1 can be viewed as a choice of two processes: one is for the purpose
of language equivalence and the other is for the purpose of (weak, secure) bisimulation.
So the worst case time complexity of Algorithm 1 is determinized by the comparison
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between these two processes. During the process for the purpose of language equivalence,
the change of insecure states to secure ones (lines 2-6) involves |Q| operations at most. The
worst case time complexity of the subset construction algorithm for determinization (line
8) is O

(
2|Q|) [12]. Therefore, the worst case time complexity of this process is O

(
2|Q|).

The process for the purpose of (weak, secure) bisimulation mainly checks whether AS is
deterministic or not and the worst case time complexity is O (|Q| · |Σ|).
Therefore, the worst case time complexity of Algorithm1 is O

(
2|Q|).

Example 4.1. For the purpose of language equivalence, insecure states in Figure 5(a) and
Figure 5(b) are changed into secure ones (lines 2-6 of Algorithm 1) and DFAs (Figure
6(a) and Figure 6(b)) can be obtained (line 7 of Algorithm 1). For the purpose of (weak,
secure) bisimulation, Algorithm 1 returns the original SDFA such as Figure 5(a) and
Figure 5(b) (lines 12 and 13 of Algorithm 1) and returns null if its input is an SNFA such
as Figure 7 (lines 14 and 15 of Algorithm 1). Results of this determinization algorithm
are correct.

It is known that the concept of (weak, secure) bisimulation is stricter than that of lan-
guage equivalence. Therefore, direct application of traditional algorithms for minimization
to SFA cannot guarantee the correctness of results. Algorithm 2 adopts the purpose based
division policy similar to that of Algorithm 1 to minimize any SFA.

Algorithm 2: Minimization of a secure finite automaton

Input: a secure finite automaton AS , a purpose and (weak, secure) bisimulation(s)
for a purpose of bisimulation

Output: a minimal DFA for a purpose of language equivalence or a minimal SFA
for a purpose of bisimulation

1 if (language equivalence purpose) then
2 if (there exist insecure states) then
3 for (each insecure state p) do
4 λ(p) = 1; /* label all insecure states as secure */

5 end
/* the modified SFA is still denoted by AS */

6 end
7 AS is converted to a language equivalent FA A = (Q,Σ, δ, I, F );
8 if (A is non-deterministic) then
9 A is determinized by algorithms such as the subset construction and the

result is denoted by D;
10 else
11 D ← A;
12 end
13 D is minimized by Hopcroft’s algorithm and Dmin is obtained;
14 return Dmin;
15 end
16 if (bisimulation purpose) then
17 while ((weak, secure) bisimulation B exits) do
18 for ((p, q) ∈ B) do
19 p and q are combined;
20 end
21 end
22 the result is denoted by ASmin and ASmin is returned;
23 end



ICIC EXPRESS LETTERS, VOL.10, NO.11, 2016 2593

Proposition 4.3. Algorithm2 outputs the correct result of minimization.

Proposition 4.4. The worst case time complexity of Algorithm 2 is O
(
2|Q|).

The proof of Proposition 4.3 (resp. 4.4) is similar in structure to that of Proposition
4.1 (resp. 4.2). Thus, both proofs are omitted owing to the limitation of space.

Example 4.2. For the purpose of language equivalence, SDFAs in Figure 5(a) and Figure
5(b) are first changed to DFAs in Figure 6(a) and Figure 6(b) (lines 2-12 of Algorithm
2). With Hopcroft’s algorithm, these DFAs can be minimized as Figure 4(a) and Figure
4(b) respectively (line 13 of Algorithm 2). For the purpose of (weak, secure) bisimulation,
Algorithm 2 minimizes the SDFA1 in Figure 5(a) as an SFAmin in Figure 8 using the secure
bisimulation {(s0, s1), (s2, s4), (s3, s5)} (lines 17-21 of Algorithm 2). SDFA2 in Figure 5(b)
cannot be minimized because there is no secure bisimulation as the input. SFAs in Figure
8 and Figure 5(b) are not securely bisimular and errors mentioned in Section 1 will never
be made.
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b b

s2 s3

b

a

a

Figure 8. SFAmin

5. Conclusion. The secure finite automaton theory is put forward to meet the demands
for analyzing and processing properties especially security. This theory is more gener-
al: traditional finite automata are special cases of secure finite automata and traditional
algorithms for determinization and minimization are contained in new algorithms respec-
tively. Systems can be modeled and analyzed using the secure finite automaton theory
and the correctness of security comparison among minimal models can be guaranteed.
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