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Abstract. In this paper, we propose a low-complexity differential detection algorithm
for a constructed VBLAST (vertical bell laboratories layered space-time) code in massive
multiple-input multiple-output (MIMO) systems when neither the transmitter nor the re-
ceiver has knowledge of the channel state information (CSI). To reduce the computational
complexity of the proposed detection scheme, we utilize a truncated polynomial expansion
(TPE) approximating the matrix inversion. Analysis and numerical results show that
the proposed detection scheme can achieve a significant reduction in computational com-
plexity in comparison with the ordinary VBLAST MIMO detector, while maintaining a
good bit error rate (BER) performance.
Keywords: Massive MIMO, VBLAST, TPE, Differential detection

1. Introduction. The massive multiple-input multiple-output (MIMO) system with lar-
ge number of transmit and/or receiver antennas is one of the key technologies for next-
generation wireless communications, which has the potential to bring tremendous im-
provement in data rates and energy efficiency [1]. In order to detect the received signal
correctly, the receivers need to have an accurate estimate of the channel state information
(CSI). However, due to a large number of antennas, an accurate estimation of CSI is very
difficult to obtain and the system overhead rises significantly in massive MIMO systems.
If neither the transmitter nor the receiver has knowledge of CSI, a differential detection
algorithm can be applied [3,4]. In [4], for example, a linear differential detector close
to zero forcing (ZF) performance is proposed for MIMO detection. Unfortunately, the
detector in [4] incurs a large computational burden due to matrix inversion computing.
In massive MIMO systems, the computational complexity of traditional differential de-
tection algorithms is even higher when the large-dimensional matrix inversion needs to be
performed. In order to reduce computational burden in detection, the large-dimensional
matrix inversion can be replaced by a truncated polynomial expansion (TPE) with limited
number of terms [2]. In this paper, we propose a linear-complexity differential detection
algorithm based on a TPE [2,6-8] for a constructed VBLAST (vertical bell laboratories
layered space-time) code [5] in the case that the receiver has no prior knowledge of CSI in
the massive MIMO system. Furthermore, we compare the computational complexity and
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the bit error rate (BER) performance of the proposed detection scheme with the ordinary
VBLAST MIMO detector.

2. System Model. Consider an uplink massive MIMO wireless communication system
consisting of a base station with Nr receiving antennas and the user mobile terminals, each
of which has Nt transmitting antennas, where Nt ≪ Nr. We assume that the transmitted
signals are processed by VBLAST approach over the wireless channel which is assumed
to be quasi-static and flat block-fading with the block size of T . In the kth block, if the
transmitted and received signal matrices are denoted by Sk with the size of Nt × Nt and
Yk with the size of Nt × Nr, respectively, the received signal matrix at time k will be
given by

Yk = SkH + Nk, (1)

where H is an Nt × Nr channel fading matrix whose element hntnr is the channel fad-
ing coefficient from the transmitting antenna nt to the receiving antenna nr. Further
the entries of H are modeled as independent and identically distributed (i.i.d.) complex
Gaussian random variables with zero mean and unit variance. In (1), Nk is an Nt × Nr

additive noise matrix, whose elements nk
ntnr

are i.i.d. complex Gaussian random variables
with zero mean and the variance 1/(2SNR) per real dimension.

3. TPE-Based Differential Detection. We assume that neither the transmitter nor
the receiver has the knowledge of CSI. Hence a differential modulation scheme is utilized
[3,4]. Specifically, for the kth block, a VBLAST code can be constructed as

Uk =
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. (2)

Consider two consecutive block transmissions, k and k − 1, where the (k − 1)th block
is the reference for decoding the kth block. Then the relationship between the (k − 1)th
and the kth transmission matrices is satisfied by [3]

Sk =
UkSk−1

dk−1
, (3)

where, dk−1 =
√∣∣sk−1

1

∣∣2 +
∣∣sk−1

2

∣∣2 + · · · +
∣∣sk−1

Nt

∣∣2. Define S0 = I when k = 0.

Without loss of generality, we only study the signals received by the first receiving
antenna at the base station. Hence the received signals can be explicitly written as,
following from [3,4],

yk
1 = Skh1 + nk

1 =
Ukyk−1

1

dk−1
+

(
nk

1 −
Uknk−1

1

dk−1

)
︸ ︷︷ ︸

ñk
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, (4)

where h1 and nk
1 are the first column of the channel matrix H and the noise matrix

N, respectively. In (4), ñk
1 is the additive white Gaussian noise vector in which el-

ements are i.i.d. zero-mean complex Gaussian random variables with variance σ̃2 =[
1 + (dk)2

/
(dk−1)2

]
(1/γ) real dimension, where γ is the input SNR.
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For the sake of simplicity, we omit the subscript “1” in variable notations in (4). Then
(4) becomes

yk =
Ukyk−1

dk−1
+ ñk. (5)

Denote the received signal yk of the kth block transmission by yk =
(
yk
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)T
.

Then from (5), we have
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where Rk−1 is an Nt × Nt matrix, which can be expressed as

Rk−1 =


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. (7)

We are now in position to derive an improved low-complexity linear differential detection
algorithm based on the replacement of the matrix inversion with a truncated polynomial
expansion. We start it by considering the ordinary MIMO detection for our constructed
VBLAST code in (2) and defining Wk−1 as

Wk−1 =
(
Rk−1HRk−1

)−1
Rk−1H, (8)

where (·)H denotes Hermitian operation. Obviously, the matrix Wk−1 size of Nt × Nt

increases with Nt. Left-multiplication of (6) by Wk−1 will get the transmitted signal
detected.

In massive MIMO systems, however, inversion of very large matrix in (8) incurs great
computational complexity. To reduce the computational burden in detection, we use a
truncated polynomial expansion to replace the matrix inversion. Specifically, it is known
that if a parameter α is selected such that 0 < α < 2/ max λ(X), where λ(X) is the
eigenvalue of the matrix X, the inverse of any positive definite Hermitian matrix X can

be expressed by a truncated polynomial expansion as X−1 = α
(
I−(I−αX)

)−1
= α

∞∑
n=0

(I−

αX)n. Thus, to exploit the truncated polynomial expansion technique to approximate the
inversion of Wk−1 with a matrix polynomial, we first express(
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Then a finite series expansion (a + b)n =
n∑

l=0

(
n
l

)
an−lbl is employed in the right-hand

side of (9) and the result is then plugged into (8). Considering a truncated polynomial
expansion using only the first J terms in (8), we will approximate
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Further, Wk−1 in (10) can be expressed as
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n=0
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where w0, . . . , wJ−1 are scalar coefficients.
Now we examine the computational complexity of the detection. Left-multiplying (6)

by (11) yields

r̃k = Wk−1r̂k =
J−1∑
n=0

wn

(
Rk−1HRk−1

)n
Rk−1Hr̂k. (12)

If n = 0, i.e., J = 1, (12) becomes r̃k = w0R
k−1Hr̂k, which results in a maximal ratio

combining (MRC) detector. We consider the complexity calculation of the detection as
the count of total number of complex multiplications, complex summations, and square-
root operations. Since the complexity calculation is counted as N2

t + Nt at each receiving
antenna in this case [9], the detector thus requires N2

t Nr + NtNr complexity calculations.
If 1 ≤ n ≤ J − 1, denote

r̄k
n =

(
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)n
Rk−1Hr̂k. (13)

Then (12) becomes

r̃k =
J−1∑
n=0

wnr̄
k
n. (14)

From (7), we know that Rk−1HRk−1 = Rk−1Rk−1H. Thus, (13) is simplified as
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n =

(
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(15)

Hence the detection of transmitted signals in (15) can be conducted in iterations, which
enables the parallel computing over multi-core processing in mobile terminals. Further,
for 1 ≤ n ≤ J − 1, each iteration needs 2N2

t + Nt complexity calculations. Then the
complexity calculation is counted as (J − 1)2N2

t + (J − 1)Nt for each receiving antenna
[6,7]. The entire computational complexity is thus (J−1)2N2

t Nr+(J−1)NtNr calculations
for all receiving antennas. For comparison, the complexity calculation for each receiving
antenna at the ordinary detector as in (8) for our constructed VBLAST code is counted
and is shown as 2N3

t + 4N2
t according to [9]. The entire complexity calculation is thus

2N3
t Nr + 4N2

t Nr calculations for all receiving antennas.
Based on the above analysis, Table 1 summarizes the complexity calculations in terms

of the total number of complex multiplications, complex summations, and square-root
operations on the detectors we have discussed. It shows that our proposed TPE-based
scheme with J = 1, J = min(Nr, Nt) = Nt, and the ordinary detector in (8) are listed in
ascending order of their computational complexities.

4. Numerical Results. The numerical simulations are conducted to evaluate the per-
formance of the proposed TPE-based differential detection algorithm. We set Nr = 50
and Nt = 5, and use QPSK constellation in the simulations. Figure 1 illustrates the BER
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Table 1. Computational complexity calculations

Algorithms Computational complexity

TPE, J = 1 N2
t Nr + NtNr

TPE, J = Nt 2N3
t Nr − N2

t Nr − NtNr

Ordinary detector in (8) 2N3
t Nr + 4N2

t Nr

Figure 1. BER vs. SNR with different order of J (Nt = 5, Nr = 50)

performance of the proposed differential detection algorithm with several TPE order val-
ues of J for our constructed VBLAST code, which is also compared with the ordinary
detection algorithm in (8) in the same figure.

From the figure, we see that the larger value of J is chosen, the better BER performance
is achieved by the proposed TPE-based differential detection algorithm for our constructed
VBLAST code. Specifically, the BER performance of our proposed scheme is almost the
same as the ordinary VBLAST MIMO detection in (8) when J = 9. Furthermore, for
any TPE order of J , the proposed TPE-based detection and the ordinary detection in (8)
perform almost identically at the low SNR values. However, the performance gap between
our scheme with lower TPE order and the ordinary detection algorithm in (8) increases
with SNR. Hence the trade-off between the BER performance and the computational
complexity needs to be considered when the proposed TPE-based differential detection
algorithm for our constructed VBLAST code is applied in massive MIMO systems.

5. Conclusions. In the paper we propose an improved differential detection algorithm
with reduced linear complexity when neither the transmitter nor the receiver has knowl-
edge of the channel state information in massive MIMO systems. To reduce the computa-
tional complexity, we utilize a truncated polynomial expansion to avoid large-dimensional
matrix inversion in detection for our constructed VBLAST code. Analysis and numerical
results show that the proposed scheme can achieve significant reduction in computational
complexity compared with the ordinary VBLAST MIMO detector, while maintaining
good BER performance.

For further work, we plan to improve our proposed scheme by considering the inte-
gration of coherent detection [8]. The channel estimation will be also exploited for this
improvement of massive MIMO detection.
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