
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 11, November 2016 pp. 2623–2629

ADDCONCEPT: A VERTICAL UNION ALGORITHM
OF CONCEPT LATTICES

Hongtao Liang1,2, Jianliang Xu1 and Ke Xu3

1School of Information Science and Engineering
Ocean University of China

No. 238, Songling Road, Laoshan District, Qingdao 266100, P. R. China
hongtaoliang@126.com; xjl9898@ouc.edu.cn

2School of Information Engineering
Qingdao University of Technology

No. 236, South Fuzhou Road, Jiaozhou Disctrict, Qingdao 266300, P. R. China

3School of Computer Science and Engineering
Beihang University

No. 37, Xueyuan Road, Haidian District, Beijing 100191, P. R. China
kexu@nlsde.buaa.edu.cn

Received March 2016; accepted June 2016

Abstract. Assembling same-fields concept lattices into a new concept lattice is con-
sidered as a novel research method in parallel constructing concept lattice and ontology
merging. Its basic idea is to horizontally or vertically divide a large formal context into
a set of smaller sub-contexts that share objects or attributes, and then assemble the cor-
responding lattices of the sub-contexts. Different from the existing concept lattices union
algorithms that all the concepts should be compared, this paper presents a new union
approach of concept lattices, in which only the new and updated concepts generated in
last insertion are compared. Thus, we can drastically reduce the comparison times of the
concepts by traversing the structures of the original lattices. Experiments show that the
proposed algorithm can improve efficiency obviously, compared with other concept lattice
merging algorithms.
Keywords: Concept lattice, Vertical union, Formal concept analysis, Bottom-up, Con-
cepts inserting

1. Introduction. Concept lattice [1] is the core data structure of Formal Concept Anal-
ysis and has found its applications in information retrieval, data mining, machine learning
and other areas [2, 3, 4]. Constructing concept lattice from formal context is always an
important research spot of formal concept analysis. Especially, incremental algorithms
have been paid attention to widely for their good maintainability, such as Godin algo-
rithm [5] and AddIntent algorithm [6]. Due to its own completeness of concept lattice,
time complex of constructing concept lattice is one of the most limiting factors in the
application of formal concept analysis. In [7], an idea of parallel building is proposed,
in which formal context is split into several sub-contexts, and then the corresponding
sub-lattices are constructed respectively and merged into a complete concept lattice. This
idea is also called as distributed processing model of concept lattice [8]. Merging con-
cept lattices is the core work of distributed processing model. According to the splitting
fashions, the union algorithms can be divided into horizontal union and vertical union. In
vertical union, the concept lattices have the same attribute field and the different object
field, which is in contrast to horizontal union.

2623

2624 H. LIANG, J. XU AND K. XU

[9, 10] defined the operation from vertical and horizontal union respectively, and then
presented vertical union and horizontal union algorithms to distributed constructing con-
cept lattice. The process of distributed constructing concept lattice is building each sub-
concept lattice first, and then inserting all the concepts of one sub-lattice into another
sub-lattice in the ascending order of intension (extension) to complete the union of two
sub-lattices. In this process, the improved incremental algorithm is used to avoid repeated
comparisons of update concepts and new concepts generated by inserting concept.

Based on the vertical union algorithm of [9], a linear index structure is introduced into
union algorithm of concepts in [11], where all the sub-concepts are updated quickly by
searching for the concepts with the same kind (i.e., concepts with the same extension)
between two lattices with the same field. The algorithm takes advantage of the character
that synonymous concepts can only generate update concepts, so as to reduce the number
of concepts comparison and improve the computation efficiency. The structure of the
original concept lattice is utilized and the improved AddIntent algorithm is adopted; [12]
provides a top-down union algorithm, which can reduce the repeated comparisons between
concepts. However, in all literature, the influences of the parent/child relation between
the concepts to be inserted on the change of concept lattice structure have not been
considered.

The algorithm presented in this paper is also based on the idea of inserting the con-
cepts of one lattice into another lattice one by one. Compared with the existing concept
lattice union algorithms, we make full use of the relations between parent/child and gen-
erator/new concepts to simplify the iteration process. Thus, the number of comparison
concepts is reduced greatly and experiments show that our approach has significant ad-
vantages in efficiency.

The remaining of this paper is organized as follows. Basic definitions of concept lattice
and vertical union are given in the next section. Section 3 presents the vertical union algo-
rithm. Comparison experiments are demonstrated in Section 4 to verify the effectiveness
of the proposed algorithm. Finally, we conclude this paper in Section 5.

2. Basic Definitions of Concept Lattice and Vertical Union. In this section, we
will introduce some basic definitions in formal concept analysis and vertical union [1, 8, 10].

Definition 2.1. In formal concept analysis, formal context is a triple K = (G,M, I),
where G is object set, M is attribute set and I is the binary relation between G and M .
For an object g ∈ G and an attribute m ∈ M , gIm means object g has attribute m.

Definition 2.2. In a formal context (G,M, I), a formal concept is a pair C = (O,D)
satisfying O = g(D), D = f(O), and two following properties:

f(O) = {m ∈ M |∀g ∈ O, gIm}, g(D) = {g ∈ G|∀m ∈ D, gIm}.
Here, O ∈ P (G) is called as extension of C, and D ∈ P (M) is called as intension of
concept C.

Definition 2.3. The partial order on concepts is defined as follows. Let C1 = (O1, D1)
and C2 = (O2, D2), C1 ≤ C2 ⇔ O1 ⊆ O2 (D1 ⊇ D2). If there does not exist C3 satisfying
C1 ≤ C3 ≤ C2, then we call C1 ≺ C2, where C1 is regarded as child and C2 is regarded as
parent. The parent and child are linked by an edge. The lattice induced by partial order
relation ≤ is called as concept lattice of formal context K, denoted by L(K).

Definition 2.4. Let formal contexts K =(G,M, I), K1 =(G1,M, I1) and K2 =(G2,M, I2)
satisfy G1 ⊆ G, G2 ⊆ G, if for arbitrary m ∈ M and g ∈ G1

∩
G2 satisfying gI1m ⇔

gI2m, then K1 and K2 are called as formal contexts with the same attribute field and they
are both child contexts of K. Concept lattices L(K1) and L(K2) are called as concept
lattices with the same attribute field and they are both child lattices of L(K).

ICIC EXPRESS LETTERS, VOL.10, NO.11, 2016 2625

Definition 2.5. Given two formal contexts K1 and K2 with the same attribute field; if
C1 = (O1, D1) ∈ L(K1), C2 = (O2, D2) ∈ L(K2), then we define the vertical addition
operation between concepts as C3 = C1 ∓ C2 = (O1 ∪ O2, D1 ∩ D2).

In the union process of concept lattices L(K2) and L(K1), in order to identify the change
of concepts of L(K2) in lattice L(K1), we will introduce the following definitions. Let two
concept lattices L(K1) and L(K2) be with the same attribute field, C1 = (O1, D1) ∈ L(K1)
and C2 = (O2, D2) ∈ L(K2).

Definition 2.6. When concept C2 is inserted into L(K1), for C1 ∈ L(K1), vertical addi-
tion operation C1 ∓ C2 is needed. Here, C2 is called as inserted concept and C1 is called
as compared concept.

Definition 2.7. If there exists D1 ⊆ D2, then compared concept C1 is called as updated
concept of inserted concept C2. When concept C2 is inserted into L(K1), C1 will be updated
as (O1O2, D1), i.e., updated concept C1 is the result of C1 ∓ C2.

Definition 2.8. For C2 ∈ L(K2), if there exists concept C1 ∈ L(K1) satisfying: (1) there
does not exist any concept C = (O,D) ∈ L(K1) satisfying D = D1

∩
D2; (2) for any

parent C3 = (O3, D3) of concept C1, relation D
∩

D3 = D
∩

D1 does not hold, then C is
called as new concept, and compared concept C1 is called as generator of C.

In fact, condition (2) of Definition 2.8 is used to ensure that generator concept is
infimum concept of new concepts, i.e., the maximum concept in all the concepts satisfies
condition (1). When C2 is inserted into L(K1), vertical addition operation with concept
C1 will generate new concept C = C1 ∓C2 = (O1

∪
O2, D1

∩
D2). According to condition

(2), compared concept C1 (generator concept) is the child of C. The concept lattice union
algorithm proposed in this paper aims at two concept lattices with the same attribute
field. For brevity, it will not be repeated in the following.

3. Main Idea and Theory Basis. The following theorems provide theory basis for the
algorithm of this paper.

Theorem 3.1. For C1 = (O1, D1), C2 = (O2, D2) ∈ L(K2) satisfying C1 ≤ C2, if they
have been inserted into L(K1) and C = (O, D) ∈ L(K1) is the generator concept or
updated concept of C1 in L(K1), then C must also be the new or updated concept of C2 in
L(K1).

According to Theorem 3.1, all the generator and updated concepts of parent C1 must
be a subset of new and updated concepts of child C2. Therefore, child C2 should be
inserted into L(K1) ahead of parent C1, and it is enough for parent to compare with only
new and updated concepts of child. This will greatly reduce range of concept search and
comparison.

Theorem 3.2. Given C1 = (O1, D1), C2 = (O2, D2) ∈ L(K2) satisfying C1 ≤ C2, C3 =
(O3, D3) ∈ L(K1) satisfying D3

∩
D2 ⊆ D1; if C3 and its all higher concepts are generator,

new or updated concepts of C1, then they must be generator, new or updated concepts of
C2.

Based on Theorem 3.1, Theorem 3.2 shows that when concepts of L(K2) are vertically
added with concepts of L(K1), child can replace parent for comparison. By Theorem
3.2, if the intension of child C1 includes the intersection of intensions of parent C2 and
compared concept C3, then when vertical addition is operated with C3 and all its higher
concepts, parent C2 can be replaced by child C1.

Theorem 3.3. For C1 = (O1, D1), C2 = (O2, D2) ∈ L(K2) satisfying C2 ≤ C1, if C =
(O, D) ∈ L(K1) is the common updated concept in L(K1) of C1 and C2, then O2 ⊆ O1 ⊆
O.

2626 H. LIANG, J. XU AND K. XU

Start
Let C2 L2,C1 L1;

Int=D1∩D2

There is C3

Satisfying D3=Int in L1?

Search generator Cg which is highest concept

including Int

Generate C3=(O3 O2, Int);

Add edge Cg C3

Computing each child Cc of Cg and each new

or update concept Ccn of C2

Add edge C3 Ccn;

Delete edge Cg Ccn

Is there child of C2 in L2?

C3=(O3 O2, D3);

updating all

Concepts which are

higher than C3

Recursion

Computing with

child C2 as C2 and

C3 as C1

N

YNEnd

Y

C3 is updated

concept by

Definition 2.7
Need to generate new

concept by Definition 2.8

For Adjusting edges

Computing new and

update concept using

recursive fashion

The inserting process

of C2 has finished

Figure 1. Flow chart of main idea of vertical union of concept lattices

According to Theorem 3.3, for the common updated concept C of parent C1 and child
C2, extension of new concept obtained by updating C after C2 being inserted should
include that after C1 is inserted. Therefore, when concept C is updated, if child C2 is
used to update C first, updating C by father C1 can be skipped.

The main idea of vertical union algorithm is shown in Figure 1. For two concept lattices
L1 and L2 to be merged, beginning from infimum concept of lattices L1 and L2, two
concepts C1 and C2 from L1 and L2 carried out vertical addition operation.

If there exists concept C3 in lattice L1 whose intension equals the intersection of inten-
sions of C1 and C2, by Definition 2.6, the resulting concept of vertical addition of C1 and
C2 is C3. Intensions of all the concepts higher than C3 are subsets of intension of C2. By
Definition 2.7, C3 and concepts higher than C3 are all updated concepts, and all of their
extensions are added with extension of C2 to update.

If there does not exist any concept whose intension equals the intersection of intensions
of C1 and C2, by Definition 2.8, a new concept needs to be generated. The highest concept
including intension intersection of C1 and C2 should be found first. According to condition
(2) of Definition 2.8, this concept is generator by which new concept C3 can be generated.
According to Definition 2.3, when new concept is generated, edges need to be modified.
Since generator is the parent of new concept, edge between generators Cg and C3 need
to be established. Since parent of new concept must be the resulting concept of vertical
addition operation of C2 and the concept higher than generator, vertical addition of C2

and parent of Cg can be recursively computed to obtain these new or updated concepts.
New concepts may lie between some parent-child pairs. According to Definition 2.3, the
parent-child relation will not exist between these concepts. Hence, these edges should be
deleted. After vertical addition of C1 and C2 is calculated, the inserting process of C2

is completed. Then children of C2 are continued to be inserted into L1. According to
Theorem 3.1, children only need to be vertically added with new or updated concepts.

ICIC EXPRESS LETTERS, VOL.10, NO.11, 2016 2627

Therefore, new or updated concept C3 is recursively inserted as new C1, and child of C2

is recursively inserted as new C2.

4. Experiment. To confirm the algorithm’s effectiveness, comparison experiments of
the proposed algorithm (VUACL), algorithm in [10] (UAMCL), algorithm in [11] (VUA-
CLSC), and algorithm in [12] (FVMCL) are realized by Delphi programming in a computer
with 3GB DRAM and 2.30G Hz CPU. Experimental data are random formal contexts,
where two parameters are fixed and one parameter is changed in each experiment. Every
formal context is vertically split into two formal cotexts with the same size. Then, two
lattices are built and merged by the three algorithms respectively. Finally, running times
are recorded.

In the first experiment, attribute number of the formal context is fixed at 100, the
relative probability of objects and attributes is fixed at 20%, the number of object is
changed from 10 to 150 with step 10, and there are 15 formal contexts altogether. The
results are shown in Figure 2.

In the second experiment, object number of the formal context is fixed at 100, the
relative probability of objects and attributes is fixed at 20%, the number of attributes is
changed from 10 to 80 with step 5. The results are shown in Figure 3.

Figure 2. The experiment results when |M | = 100 and relative probability
= 20%

Figure 3. The experiment results when |G| = 100 and relative probability
= 20%

2628 H. LIANG, J. XU AND K. XU

Figure 4. The experiment results when |G| = 100 and |M | = 20

In the third experiment, object number of the formal context is fixed at 100, attribute
number is fixed at 20, and the relative probability of objects and attributes is changed
from 20% to 50% with step 2%. Figure 4 records the corresponding results via four dif-
ferent algorithms. Obviously, this experiment results demonstrate the effectiveness of our
proposed algorithm.

The experiment results show that, with the increase of the size and relative probability
of the formal context, the proposed algorithm has obvious advantage on efficiency com-
pared with the algorithms in the existing literature. This can resort to the theory basis
built in this paper. Especially, by Theorems 3.1 and 3.2, numbers of operation can be
greatly decreased.

5. Conclusion. This paper presents an algorithm of assembling concept lattices for par-
allel constructing concept lattice. The influence of the parent-child relation of the concepts
to be inserted on new concepts and updated concepts is analyzed. A bottom-up way is
adopted to insert concepts of one lattice into another lattice, resulting in significant re-
duction of comparison range of concepts. Furthermore, by bottom-up updating extension
of concepts, a lot of comparison time is saved. The proposed algorithm can assemble the
concept lattices according to the dataset, avoiding to constructing concept lattices from
scratch. Finally, the experimental results and analysis show that the bottom-up vertical
union algorithm of concept lattices is very quick and effective.

Acknowledgment. This work is partially supported by Science and Technology Project
of Shandong Province University (No. J13LN77), and Shandong Province Colleges and
Universities Young Teachers Visiting Scholar Fund. The authors also gratefully acknowl-
edge the helpful comments and suggestions of the reviewers, which have improved the
presentation.

REFERENCES

[1] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer-Verlag,
Berlin, 1999.

[2] M. E. Cornejo, J. Medina and E. Ramrez-Poussa, Attribute reduction in multi-adjoint concept
lattices, Information Sciences, vol.294, pp.41-56, 2015.

[3] M. E. Cornejo, J. Medina and E. Ramrez-Poussa, On the use of irreducible elements for reducing
multi-adjoint concept lattices, Knowledge-Based Systems, vol.89, pp.192-202, 2015.

[4] P. Butka, J. Pócs and J. Pócsová, On equivalence of conceptual scaling and generalized one-sided
concept lattices, Information Sciences, vol.259, pp.57-70, 2014.

[5] R. Godin, R. Missaoui and H. Alaui, An incremental concept formation algorithm based on Galois
(concept) lattices, Computational Intelligence, vol.11, pp.246-267, 1995.

ICIC EXPRESS LETTERS, VOL.10, NO.11, 2016 2629

[6] D. van der Merwe, S. Obiedkov and D. G. Kourie, AddIntent: A new incremental algorithm for
constructing concept lattices, Proc. of the ICFCA, LNAI, pp.205-206, 2004.

[7] Y. Li, Z. Liu, X. Shen et al., Theoretical research on the distributed construction of concept lattice,
Proc. of the International Conference on Machine Learning and Cybernetics, pp.474-479, 2003.

[8] H. Zhi, D. Zhi and Z. Liu, Theory and algorithm of concept lattice union, Acta Electronica Sinica,
vol.38, pp.455-459, 2010.

[9] Z. Liu, L. Li and Q. Zhang, Research on a union algorithm of multiple concept lattices, Proc. of
the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing,
Berlin, pp.533-540, 2003.

[10] Y. Li and Z. Liu, Horizontal union algorithm of multiple concept lattices, Acta Electronica Sinica,
vol.32, pp.1849-1854, 2004.

[11] L. Zhang, X. Shen and D. Han, Vertical union algorithm of concept lattices based on synonymous
concept, Computer Engineering and Applications, vol.43, pp.95-98, 2007.

[12] L. Zhang, H. Zhang, X. Yu and L. Yin, A fast algorithm for vertically merging concept lattices,
Proc. of PCSPA, 2011.

