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Abstract. Many real-world optimization problems are dynamic. The ability to track
a changing optimum over time is concerned in these problems. In this study, a new
variant of Particle Swarm Optimization (PSO) combined with self-adaptive neighborhood
search strategy is proposed. The self-Adaptive Neighborhood Search PSO (ANSPSO)
divides the individuals of the population into three types of roles, and the individual with
different roles adopts a different update strategy during the evolution, and the search
radius adaptively changes within each environmental change cycle. A comparative study
with several algorithms with different characteristics on a common platform by using the
moving peaks benchmark and various problem settings is presented in this study. The
results indicate that the proposed algorithm can track the changing optimum in each
circumstance effectively on the selected benchmark function.
Keywords: Neighborhood search, Particle swarm optimization, Dynamic optimization,
Moving peaks benchmark

1. Introduction. Evolutionary Algorithms (EAs) have been widely employed to deal
with stationary optimization problems. However, in real-world applications, there exists
another class problem which changes conditions over time: the newly added artifacts
in production scheduling, machines wear out or unexpected maintenance result in the
decline in production capacity, urban traffic problems at different times, market factors
uncertain changes in financial trading models, etc. These changes include the fitness func-
tions, search space, and/or constraints. The dynamic behavior of Dynamic Optimization
Problems (DOPs) constitutes new challenges to the evolutionary algorithms. The main
challenge of the canonical techniques in dynamic environments is the loss of diversity
which arises due to the convergency of the evolutionary population after some iteration
steps; however, in dynamic environments, finding the optimum solution(s) in the problem
space is no longer the only goal of the optimization algorithm, but rather to continuously
track the changing optimum during the evolutionary process [1, 2].

The dynamic property of problems poses major challenges to canonical EAs [3]. Some
additional strategies are needed to be introduced into the dynamic optimization algo-
rithms. During the last two decades, there has been a growing interest in DOPs, and
many works have been achieved in EAs community in this field. A simple way to solve
DOPs is to restart the algorithm once the detection of environmental changes. However,
the primitive restart strategy is often impractical in realistic application [4]. In order
to track the optimum effectively in a dynamic environment, a key factor is to maintain
the diversity of the evolutionary population. However, the diversity of the population
is difficult to guarantee after the evolutionary operator’s operation. Therefore, the main

2631



2632 D. SHEN AND S. HU

goal of dynamic optimization algorithms is to adopt some strategies to increase or main-
tain the diversity of the evolutionary population. The hyper-mutation strategy [5] and
the random immigration strategy [6] are two straight-forward approaches to increase the
diversity. Other schemes include memory-based methods [7, 8] and multi-population ap-
proaches [9, 10].

In the current study, on account of the nature of easily losing population diversity
of conventional EAs, a self-adaptive neighborhood search particle swarm optimization
(ANSPSO), combining with multiple roles in the process of the evolution, is proposed.
The individuals in the population are assigned different roles according to its fitness
value, and different update strategies are adopted in the updating process, so as to better
maintain the diversity of the population, providing a guarantee for the algorithm to
track the changing trajectory of the optima. The ability of the algorithm to track the
changing trajectory of the optima was verified by the numerical experiments on moving
peak benchmark under different environmental cycle and different environmental change
intensity.

The arrangement of this paper is as follows. In Section 2, the basic PSO algorithm
is briefly introduced. The newly proposed approach is described in detail in Section 3.
In Sections 4 and 5, ANSPSO experimental results are compared with those of existing
dynamic optimization algorithms and analysis is given. Finally, Section 6 concludes the
paper and outlines future work.

2. Background and Related Work. Particle Swarm Optimization (PSO) [11], which
is a population-based stochastic optimization algorithm for continuous optimization, was
first developed by Eberhart and Kennedy in 1995. The algorithm is inspired by the social
interaction behavior of birds flocking and fish schooling, and it can be easily implemented
and has been proven to be both effective and fast when applied to many global optimiza-
tion functions [12].

Similar to other population-based EAs, PSO is initialized with a population of random
particles which distributed uniformly in the search space. Each particle (individual) of the
population “flies” through the d-dimensional search space, adjusting its position according
to its own experience and that of neighboring particles. Therefore, in the original PSO,
all particles have a tendency following the previous best position visited by itself and its
neighbor particles.

Assuming in a population with d-dimensional solution space of N individuals (X1,X2,
· · · , XN), the position and the velocity of the ith particle of the swarm can be repre-
sented by a d-dimensional vector, Xi = (xi,1, xi,2, . . . , xi,d) and Vi = (vi,1, vi,2, . . . , vi,d),
respectively. The best previously visited position (pbest) of the ith particle is denoted as
Pi = (pi,1, pi,2, . . . , pi,d), and the best position of the population (gbest) is represented by
Pg = (pg,1, pg,2, . . . , pg,d). For generation t of PSO algorithm, Vi and Xi are updated as
follows:
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where:
φ1 = c1r1, φ2 = c2r2,

and c1 and c2 are the positive acceleration constants used to scale the contribution of
cognitive and social components, typically set to 2.05. r1, r2 are uniformly distributed
random number in the interval [0.0, 1.0].

According to the definition of the neighborhood of each particle, there are two main
kinds of neighborhood models for PSO [13]. The first one is called lbest model, where
each particle is mutated using the best position found so far in its several fixed neighbors
and not in the entire population. On the other hand, the second one, referred to as the
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gbest, the neighborhood of a particle is selected in the entire population for the current
generation. Some researchers pointed out [14, 15] that the gbest model converged faster
and would be more likely to get stuck in local optima than that of lbest. On the other
hand, the lbest model is converged slower with less vulnerability to the attraction of local
optima than that of the gbest model.

The PSO algorithm performs repeated applications of the update process until a spec-
ified number of iterations has been reached, or the number of maximum evaluations has
been exceeded.

3. Proposed ANSPSO Algorithm. In a dynamic environment, maintaining popula-
tion diversity is a key factor for the algorithm to track environmental change. Various
strategies have been introduced to increase the population diversity during the evolu-
tion. Inspired by [16] and Artificial Bee Colony (ABC) algorithm [17] that categorize
the population into three groups and each group using different update strategy during
the evolution, in ANSPSO, the individuals are also divided into three categories: Leader,
Follower, Scouter. After the initialization process, the fitness of individuals in popula-
tion P are calculated and sort the values in descending order. The formerly ranked PL

(PL > 1) individuals are chosen as Leader. The next PF (PF > 1) individuals followed
on the Leader individuals are designated as Follower, and the remainder individuals are
assigned the role as Scouter.

The Leader individual(s) explores better solutions around the neighborhood of the
randomly selected one among them, the update of Leader using the following expression.

X t+1
i = X t

i + ϕi

(
X t

L −X t
i

)
(3)

where X t
L is random selected Leader different from i, ϕi is random number drawn from

[−1, 1] which is used to randomly weight the influence of the old solution to become a
new solution in the next iteration.

The Follower individual searches better solutions around the Leader within a certain
range, in order to gain a better exploration ability, and we change the search range
adaptively using expression as follows:

X t+1
i = X t

i + ϕiRi

(
X t

L −X t
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)
(4)

where X t
L is random selected Leader individual, ϕi is as Equation (3). The index r is a

random integer drawn from the Follower indices and is different from i. Ri is adaptively
adjusted using the following equation:

Ri =
|fL − fi|

fL(t− kτ)
(5)

where fi is the fitness of the current considered individual, fL is the fitness value of X t
L

in Equation (4), t is the current iteration, τ is the environmental change cycle and k =
⌈t/τ⌉−1. It can be observed in Equation (5), at the beginning of the environmental change
cycle, Follower individuals perform a wider search around the Leader, thus enhancing
the exploration ability of the Follower. When arriving at the end of the environmental
change cycle, most individuals are gathering around the Leader, the difference between
the parameters of the fL and fi decreases, and the perturbation on the X t

i decreases, too.
Thus, as the search process continues, the search scope is adaptively reduced.

The Scouter individuals use Equations (1) and (2) to update, where Pg is the fittest
individual among the Scouter individuals.

The pseudo code of the ANSPSO algorithm is illustrated in Algorithm 1.
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Algorithm 1 The pseudo code for ANSPSO

1: Setting parameters:
2: Tmax – the maximum iterations for the ANSPSO;
3: N – the population size;
4: RL,RF – the rates for Leader and Follower;
5: Initialize: Randomly generate an initial population P (0) with size N .
6: while t < Tmax do
7: Evaluate P (t);
8: Sort P (t) in descending order;
9: Select RL ∗ N individuals in the formerly ranked individuals as Leader, the next

RF ∗N as Follower individuals, the remainder are marked as Scouter individual;
10: Update Leader individuals according to Equation (3);
11: Update Follower individuals according to Equation (4);
12: Update Scouter individuals according to Equations (1) and (2).
13: P (t + 1)← P (t);
14: end while

4. Experimental Study. To provide experimental evidence to study how the proposed
algorithm improves the ability to track changing optimum in a dynamic environment than
the other schemes, a commonly used dynamic test problem, Moving Peaks Benchmark
(MPB) [18], is adopted in this study. The ANSPSO is compared with random immigration
[19] PSO, Charged PSO (CPSO) [20] and standard PSO (SPSO). In this section, we firstly
give a brief description of moving peaks benchmark, and then introduce experimental
setting used in our study.

4.1. Moving peaks benchmark. The MPB is used by many researchers to test their
dynamic optimization algorithm’s performance. The MPB consists of a set of m peaks,
each of which is defined by specific location (Xi), heights (Hi), and widths (Wi). The
peaks are distributed randomly in a search space. An MPB for n dimensions and m peaks
has the following form:

f(x, t) = max
i=1,...,m

Hi(t)

1 + Wi(t)
n∑

j=1

(xj(t)−Xij(t))2

(6)

Then, at a certain iteration step, the height, width and location of peaks are changed
by adding a random Gaussian variable (σ) multiplied by a specific severity factor, hseverity

and wsererity, respectively. A change of a single peak can be described as follows:

Hi(t) = Hi(t− 1) + hseverity · σ (7)

Wi(t) = Wi(t− 1) + wseverity · σ (8)

Xi(t) = Xi(t− 1) + vi(t) (9)

where the shift vector vi is linear combination of random vector r and the previous shift
vector vi(t − 1) and is normalized to movement length s, which determines the change
severity of the environment. The movement of a single peak can be described as follows:

vi(t) =
s

|r + vi(t− 1)|
((1− λ)r + λvi(t− 1)) (10)

The random vector r is created by drawing a random number for each dimension and
its length is normalized to the movement severity s. The parameter λ allows to control
the trends, a random direction for λ = 0 or a direction depending on the previous director
for λ > 0.
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Table 1. Default settings of moving peaks benchmark

Parameter Value

Number of peaks m 10
Frequency of change 5000
Search space range ∈ [0, 100]
Peak heights ∈ [30, 70]
Peak widths ∈ [1, 12]
Height severity 7.0
Width severity 1.0
Peak shape cone
Shift length s ∈ {0.5, 1.0, 2.0, 3.0, 4.0, 5.0}
Number of dimension D 5
Correlation coefficient 0

4.2. Experimental setup. In our experiments, each algorithm is carried out with a
population of 50 individuals. The random immigrants algorithms replace 10% worst
individuals of the population with randomly generated individuals at each generation,
i.e., 5 worst individuals will be replaced by the randomly generated particles. In CPSO,
the parameters are set as follows: Q = 0.15, pcore = 2.187, prepel = 31.5 (cf. [21]). The
acceleration coefficient c1 and c2 are set to 2.05. In ANSPSO, the ratio among Leader,
Follower and Scouter is set to 0.05 : 0.5 : 0.45 according to preliminary experiments.

Unless stated otherwise, the parameters of MPB have been set as follows: the search
dimensionality D is set to 5, the search space is XD = [0, 100]D, there are p = 10 peaks,
the peaks heights vary randomly within [30, 70], and the peaks widths randomly draw
from [1, 12]. These MPB parameter settings are summarized in Table 1. we also measure
the performance of the algorithms under different change severity. In this paper, the
performance of the algorithms was measured by the offline error, which is calculated as
the average of the difference between the current best individual and the real optimum
in current environment, for every function evaluation and for all environmental changes
[22]:

eoff =
1

NcNe

Nc∑
k=1

Ne∑
j=1

(f∗
k − fkj) (11)

where Nc is the total number of environmental changes in a run, Ne is the total number
of evaluations allowed before the next change, f ∗

k is the theoretical optimum of the kth
change, and fkj is the best evaluation found by the algorithm since last change up to
the jth evaluation of the kth environmental change. We also use the offline performance
[9] to compare the performance in more detail of the selected algorithms. The offline
performance can be described as follows:

Fp =
1

T

T∑
t=1

f ∗
t (12)

where f ∗
t is the best solution at time t, and T is the maximum evaluations allowed in a

run.

5. Results Analysis. For each test case, we run each algorithm 30 times with different
random seed, and each run consists of 30 environmental changes, i.e., there are 30× 5000
evaluations in each run. Table 2 shows the means and variances of offline error obtained
by the four algorithms. We also plot the offline performance of the algorithms as shown
in Figure 1.
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Table 2. Offline error and standard deviation for s = 1.0

Algorithm Offline error Standard deviation

ANSPSO 10.739 2.012
CPSO 13.978 4.654
RIPSO 12.616 2.575
SPSO 14.564 5.068
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Figure 1. The offline performance of the algorithms with s = 1.0

5.1. Performance analysis with shift length s = 1.0. From Table 2 we can see
that the proposed ANSPSO algorithm performed the best, and the SPSO performs the
worst. The results show, although PSO has achieved a great success in static optimization
problems, it cannot effectively track the changing optimum in the dynamic environment
due to the convergence of the algorithm. As the parameters selected in our study, the
performance of the CPSO is worse than RIPSO, which means that even introducing
a certain number of randomly generated individuals in canonical PSO, it can effectively
increase the population diversity, and thus enhance the ability to track the moving optima
in the dynamic environment.

From Figure 1 we can draw the similar conclusion as Table 2 shows. Before the first
environmental change, all the four algorithms evolve toward the optima and we cannot
distinguish clearly from each other. After the first change, from Figure 1 we can see,
with the evolution going on, the difference in the performance of the selected algorithms
gradually shows up. Before the third environmental change, the proposed algorithm
performs worse than the other algorithms. The superiority of the multi-role evolution
does not emerge. Because at this time, the shift of the optima is little and the individual
number which conducts the exploring work in ANSPSO is less than the other algorithms.
While for canonical PSO, the global random search helps the algorithm to find the “static”
optima. About 5 environmental changes later, the optima move away from the original
position further and further. The canonical PSO loses the ability to track change optima
because of the convergence, while the superiority strategy introduced in our algorithm
shows up. The offline performance of the ANSPSO improves rapidly. Starting from
the fifth change until the end, the ANSPSO performs significantly better than the other
algorithms. The performance of CPSO and SPSO decreased slowly, and the performance
of RIPSO maintains a steady level, which indicates the effectiveness of the immigration
of new randomly generated individuals in a dynamic environment. Because we adopt
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multi-role evolution, the population uses particles with a different role to act exploring
and exploiting works. Thus keep a good balance between the exploitation ability and
exploration ability and maintain a high diversity, and it can effectively track the changing
optima.

5.2. Performance with different shift length. From Table 3 we can see that the
ANSPSO seems to be superior to the rest of the algorithms tested. Table 3 indicates
that the performance of ANSPSO is significantly better than the performance of CPSO,
RIPSO and SPSO on the MPB. With a small change severity s = 0.5, it is less hard for
an algorithm to track the change of optimum, the ANSPSO achieves a low offline error
which is less about 30% than that of the worst one, SPSO. As we have analyzed before, the
RIPSO ranks the second, which confirms the simple introduction of new random generated
individual strategy works well in a dynamic environment. With the shift severity gradually
increasing, all of the algorithms performance decrease. The most rapid decline is CPSO
and SPSO, with the shift severity varying from 0.5 to 5.0, the offline error increases from
13.452 to 22.598 and 14.354 to 22.228 respectively. The least decline of performance is the
proposed algorithm, and then the second is the RIPSO. The offline error of the ANSPSO
increases only about 42% with the shift severity change from 0.5 to 5.0.

Table 3. Offline error under different shift length(s)

Algorithms
Shift length

0.5 1.0 2.0 3.0 4.0 5.0

ANSPSO
10.024 10.739 12.852 13.812 14.025 14.192
±2.468 ±2.012 ±1.413 ±1.530 ±1.302 ±0.895

CPSO
13.452 13.978 17.889 20.457 21.981 22.598
±5.713 ±4.654 ±5.112 ±4.869 ±5.104 ±5.044

RIPSO
12.449 12.616 14.330 16.125 16.947 17.153
±3.147 ±2.575 ±2.324 ±1.634 ±2.246 ±1.946

SPSO
14.354 14.564 18.312 20.443 21.565 22.228
±5.984 ±5.068 ±5.213 ±4.725 ±4.652 ±4.464

From Table 3 we can see another interesting result. With the shift severity increase, the
performance of all algorithms declined, although the ANSPSO offline performance also
increased from 10.024 to 14.192, but the standard deviation of the ANSPSO decreased;
this gives us a hint that the more severity of the environmental change, the more steady
performance ANSPSO will achieve. The reason is that we have introduced multi-role
evolution strategy in ANSPSO. In each iteration, there are three parts individuals with
different roles to conduct exploring and exploiting works. The Leader individuals perform
exploiting work around themselves in a certain range, while the Follower individuals
perform exploring work around the Leader individuals in a wider range. The Scouter
individuals perform exploring work randomly. In ANSPSO, as the parameters we selected
in this study show, most individuals are assigned to the last two types of roles, thus
ensuring the population diversity maintains a higher level in all severity of environmental
change. The more severity of environmental change, the more superiority of the multi-role
evolution appears.

6. Conclusion and Future Work. In a dynamic environment, the ability to continu-
ously track the moving optimum over time is a key fact to measure the performance of an
optimization algorithm. In this study, we extend PSO by introducing multi-role evolu-
tion strategy to tackle dynamic environments. Experiments on moving peaks benchmark
function show the effectiveness of ANSPSO to capture the moving optima in a dynamic
environment.
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Future work will test other variants of the problem used (for example, varying the
number of dimensions), and also use other benchmark functions. It would also be very
interesting to see the performance of the proposed technique under different change period.
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