
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 11, November 2016 pp. 2639–2644

FORMAL MODELING OF RAILWAY SIGNAL
SAFETY-CRITICAL SOFTWARE

Yao Li, Jin Guo, Shan Yan and Qian Yu

School of Information Science and Technology
Southwest Jiaotong University

No. 111, North Section 1, Second Ring Road, Chengdu 610031, P. R. China
ly 9967@163.com

Received March 2016; accepted June 2016

Abstract. Focusing on the problem that the traditional modeling methods fail to sat-
isfy the clock constraint requirement of railway signal safety-critical software well, a for-
mal method of Timed SyncCharts is proposed which extends SyncCharts with clock
constraints. First, the formal description of Timed SyncCharts is provided system-
atically with Z notion; then, the equivalent transformation of Timed SyncCharts into
Timed Automata model is demonstrated, which makes it easy to analyze and verify the
function and time properties; finally, in order to show the feasibility and effectiveness of
the proposed method, the Timed SyncCharts model of switch of computer based inter-
locking is established, and the corresponding Timed Automata model is presented.
Keywords: Safety-critical software, Formal modeling, Clock constraint, Timed Sync-
Charts, Timed Automata

1. Introduction. With the rapid development of computer, software is increasingly ap-
plied to the control equipments of railway signal system. As a typical safety-critical soft-
ware, railway signal software performs safety-related function and requires a strict fail-safe
and clock constraint requirements [1]. Due to the effects of concurrency, conflict, com-
petition, and realtime of railway signal system, how to describe the function and clock
constraint effectively is a key to the safety assurance of this software.

Visual language of formal methods is easy to understand and safety analysis is widely
used in safety-critical software design. The main visual language includes Timed Automata
[2], Timed Petri Net [3,4], Timed UML [5], etc. Due to the flat structure, these methods
easily make model complex and have a huge state space; meanwhile, preemption is not
involved. Hsiung et al. presented a method of SafeCharts [6,7], which supports hierarchy
and includes functional layer and safety layer. SafeCharts is appropriate for safety anal-
ysis, but it lacks clock constraints, and the functional and safety layers increase model
complexity. Harel presented a Statecharts [8] method, which supports hierarchy and con-
currency. Charles extended Statecharts to a SyncCharts [9,10] method, which strictly
restricts the transition behavior and improves preemption mechanism. As concurrency,
hierarchy, synchronization and communication are supported, and SyncCharts improves
modeling efficiency of complex system. However, temporal behavior as a typical charac-
teristic of safety-critical software is still not involved in SyncCharts, which results in
SyncCharts has to face the problem that it cannot specify the required temporal behav-
ior as Timed Automata does. This paper proposes a Timed SyncCharts method, which
extends SyncCharts with real-time constructs, including clocks and clock constraints.
The advantages of modeling complex behavior with Timed SyncCharts are combined
with the advantages of specifying temporal behavior with Timed Automata, resulting in
the extension of SyncCharts to efficiently specify time-critical systems like railway signal
software.

2639



2640 Y. LI, J. GUO, S. YAN AND Q. YU

The organization of the paper is as follows. The next section introduces Timed SyncCh-
arts, and its formal definition is given by Z notion [11]. A model analysis method for
Timed SyncCharts that translates Timed SyncCharts to Timed Automata is presented
in Section 3. Section 4 presents a case study, and Section 5 concludes the article.

2. Timed SyncCharts Language. Statecharts is a tuple (B,S, h, t, ∆, A) [12], where:
B is a finite set of basic events;
S is a finite set of state names;
h ∈ S → 2S is the hierarchy function;
t ∈ S → {PRIM,AND,OR} is a type function;
∆ ∈ S → 2S is an initial state function;
A := ⟨Source,Dest, T rigger, Action⟩ is a finite set of transitions.
From the definition, Statecharts lacks clock constraint, and the hierarchy is defined

roughly. SyncCharts is a variant of Statecharts and inherits this disadvantage. To define
a complete Timed SyncCharts, this section gives definitions of clock variables and clock
constraints first.

Definition 2.1. A time sequence tc = tc1tc2tc3 · · · tci · · · is an infinite sequence of time
values tci ∈ R+, and:

1). ∀i ≥ 1, tci < tci+1;
2). ∀t ∈ R+, ∃i ≥ 1, tci > t.

Definition 2.2. For a clock variables set C, the set ∆(C) of clock constraints δ is:

δ := x ∝ d|x − y ∝ d|¬δ1|δ1 ∧ δ2,

where δ1, δ2 are clock constraints, and x, y ∈ C, d ∈ N , ∝∈ {≤, <, =,≥, >}.

A clock valuation over C is a mapping v : C → tc, which assigns to each clock a time
value. Clock valuation v satisfies a clock constraint δ of C if δ valuates to true using v,
denoted by v(C) |= δ.

2.1. TSTG. After defining clock variables and clock constraints, this section defines the
basic unit of hierarchy of Timed SyncCharts, TSTG (Timed States Transition Graph),
using schema language of Z notion.

TSTG is a state transition graph with clock constraints, which contains elements of
finite state set, initial state, finite final state set, finite signal set, clock variables set,
transition set, state action function, and state invariant function. The Z state schema of
TRANSITION, LABEL and TSTG are shown in Figure 1.

TSTG has only one initial state, and its transition contains elements of source state,
priority, transition type, label and target state. Given a transition t, the source state and

Figure 1. Z schema of TSTG



ICIC EXPRESS LETTERS, VOL.10, NO.11, 2016 2641

target state is denoted by source (t) and target (t). Priority eliminates the indeterminacy
when more than one transitions of a state are triggered. Transition type is denoted by
TYPE := {TSTRONG, TWEAK, TSYNC}, where TSTRONG is strong transition, TWEAK is weak
transition, and TSYNC is normal termination transition. When a state has no less than one
outgoing transition, each has a different priority, and TSTRONG has a higher priority than
TWEAK, and TWEAK is higher than TSYNC. LABEL is label of transition, where δ is the
clock constraint, g is the input signal, and c is the clock that the transition resets. ma is
a state action function, which assigns signals to each state, where Type := {ENTER, IN}
represents the signal that would be triggered when entering or being in a state. mc is a
state invariant function, which assigns each state clock constraints that the state must be
satisfied.

2.2. Timed SyncCharts. After defining the TSTG, a complete Timed SyncCharts,
denoted by TSC, can be defined.

TSC is an extended structure of nesting TSTG in states of TSTG, and then states
are extended to be simple or macro, denoted by type : S → {BASIC, MACRO}. TSC
contains elements of finite states set, root state, clock variables set, finite signals set,
finite TSTG set, and TSTG assignment function, denoted by (S, top, C, G,Tstg, child).
If ∃tstg : TSTG ∈ child (s2), then ∀s1 ∈ tstg.S, s1 is a child of s2, denoted by s1 ∈
child (s2); s2 is parent of s1, denoted by s2 = parent (s1). The reflexive transitive closure
child∗(s) ::= child(s) ∪

∪
{st : child∗(s) • child∗ (st)} denotes the child relation of s. The

Z state schema of TSC is shown as Figure 2, and it satisfies the following constraints:

1). state can only be BASIC or MACRO;
2). transition must be in the same layer;
3). state possesses only one parent, and top has no parent;
4). every state is a child of top;
5). the child function cannot support cyclic assignment;
6). every TSTG of source state of transition TSYNC contains final states;
7). each MACRO state has no more than one TSYNC transition.

TSC
S:

:

top

Tstg F TSTG

Schild : F Tstg

( ) BASIC ( )s S type s child s" Î · = = Æif then

1 2 1 2 1 2( ), , ( ,: , )ss s s S s parent s parent s ss" · = = =if then

*
\ ( )top S child top=

*,: ( )s S s child s" Ï

( ):
SYNC

t T type t T" · =if then

(( ) MACR) O ttype source = Ù

: ( ( )) .tstg TSTG child source t stg at fin l" Î · ¹ Æ Ù

1 1 1: , ( ) ( )t T t t source t source t" · ¹ =if then

1. SYNCt TYPE T¹

( ) BASIC MACRO( )s S type s type s" Î · = Ú ¢ =

( )child s ¹ Æelse

( ( )): ( )( )t T parent source parent tart get t" · =

MACRO( )top S type topÎ Ù =

.tstg Tstg tstg S S" Î · Í

Figure 2. Z schema of Timed SyncCharts



2642 Y. LI, J. GUO, S. YAN AND Q. YU

3. Model Analysis of Timed SyncCharts. Given a TSC, the model analysis is to
check whether TSC satisfies a safety property ϕ, abbreviated as TSC |= ϕ.

Timed Automata (TA) is an extended automaton to model the behavior of real-time
system over time, and has mature model analysis algorithms.

Definition 3.1. A timed automata TA is a tuple (L, l0, C, A, E, inv) with:
L is a finite set of locations;
l0 ∈ L is an initial location;
C is a finite set of clocks;
A is a finite alphabet;
E ⊆ L × ∆ (C) × A × 2C × L is a finite set of edges;
Inv : L → ∆ (C) assigns an invariant to locations.

TSC model analysis could be performed through TA analysis. First, TSC should be
translated to TA structure equivalently, and then TA model tools could be used, for ex-
ample UPPAAL, to analyze TSC model indirectly. Thus, model analysis of TSC amounts
to model analysis of its corresponding TA:

TSC |= ϕ if and only if TA |= ϕ.

A configuration of TSC is a maximal set of states that the system could be in simul-
taneously, and every state should satisfy its invariant. top belongs to any configuration,
and if a configuration contains a MACRO state, every TSTG which has exact one state
belonged to this configuration. Z schema of configuration is shown as Figure 3.

Figure 3. Configuration of TSC

Paths of TA are sequences of state transitions in TA. The reachable analysis of TA
paths can be used to verify whether TA satisfies its system properties.

Definition 3.2. A path of a TA is a finite or infinite state sequence s0, s1, s2, s3, · · · ,
s0 = l0 and ∀i > 0, ∃δ ∈ ∆ (C), a ∈ A, c ∈ C, (si, δ, a, c, si+1) ∈ E.

A TSC path is a configuration sequence of an execution process of TSC. next (cf, δ, g, c)
means a reachable configuration from cf with clock valuation δ, signal g and reset clock
set c. The initial configuration is denoted by conf0 (TSC, 0).

Definition 3.3. A path of TSC is a finite or infinite configuration sequence cf0, cf1, cf2,
· · · , cf0 = conf0 (TSC, 0) and ∀i ≥ 0, ∃δ ∈ ∆ (C), g ∈ G, c ∈ C, cfi+1 ∈ next (cfi, δ, g, c).

Theorem 3.1. Let κ (TSC) be a mapping of TSC = (S, top, C,G,Tstg, child) to a tuple
(L′, l′0, C

′, A′, E ′, Inv′), with:
L′ = conf (TSC, v (C));
l′0 = conf0 (TSC, 0);
C ′ = C;
A′ = G;
E ′ := {(s, δ, a, c, t)|s, t ∈ L′, δ ∈ △ (C) , a ∈ G, c ∈ C, t = next (s, δ, a, c)};
Inv′ : L′ → ∆′ (C ′);
then τ = (L′, l′0, C

′, A′, E ′, Inv′) is a TA.

Proof: According to the definition, the locations set, initial location, clocks set, ac-
tions set and location invariant function of τ are mapped to configurations set, initial



ICIC EXPRESS LETTERS, VOL.10, NO.11, 2016 2643

configuration, clocks set, signals set and state invariant function of TSC respectively.
∀cf1, cf2 ∈ conf (TSC, v (C)) • ∃δ ∈ ∆ (C), g ∈ G, c ∈ C, cf2 = next (cf1, δ, g, c), by the
mapping κ, ∃s, t ∈ L′, δ′ ∈ ∆′ (C ′), a′ ∈ A′, c′ ⊆ C ′, s = cf1, t = cf2, δ′ = δ, c′ = c,
a′ = g, (s, δ′, a′, c′, t) ∈ E ′, then τ = (L′, l′0, C

′, A′, E ′, Inv′) is a TA. �
κ (TSC ) implies that the configuration set TSC and state set of TA have equivalence

state space and execution path.

Theorem 3.2. Let ρ be a projection of a TSC path cf0, cf1, cf2, · · · to a τ sequence
s0, s1, s2, · · · , then ∀ω ∈ paths (κ (TSC )) ⇔ ∃σ ∈ paths (TSC ) : ρ (σ) = ω.

Proof: ⇒: κ (TSC ) maps a TSC to a TA, and TSC configurations set is mapped to TA
states set. ∀s1, s2 ∈ L′, δ′ ∈ ∆′ (C ′), a′ ∈ A′, c′ ⊆ C ′, (s1, δ

′, a′, c′, s2) ∈ E ′, according to
Theorem 3.1, in TSC, ∃cf1, cf2 ∈ conf (TSC, v (C)), g ∈ G, δ ∈ △ (C), c ∈ C • cf1 = s1,
cf2 = s2, cf2 = next (cf1, δ, g, c). Therefore, for any TA sequence ω = s0, s1, s2, · · · , in
TSC, there exists a path σ = cf0, cf1, cf2, · · · , and ρ projects σ onto ω.

⇐: By contradiction, assume that ∃σ = cf0, cf1, · · · , cfi, cfi+1, · · · , σ ∈ paths(TSC ),
ρ(σ)=ω, ω /∈paths(κ(TSC )). According to Theorem 3.1, ∃i, cfi+1 /∈next(cfi); if not, ω ∈
paths (κ(TSC )). However, if there exists such a (cfi, cfi+1), then σ /∈ paths(TSC ). �

Theorem 3.2 implies that TSC and TA are commutative, and run on the same sates
sequence and transition relation, as shown in Figure 4.

4. Example. Computer based interlocking system [13] is a core equipment of urban
rail transit signal system, which comprises switch, signal and route components. Taking
switch as an example, when it receives switch request, if safety conditions, such as unlocked

TSC TA

paths(TSC) paths(TA)

paths paths

k

r

Figure 4. Mapping of TSC and TA

Figure 5. TSC and TA models of switch



2644 Y. LI, J. GUO, S. YAN AND Q. YU

state, no conflict request signal, keep over 1 second, and the expected position is switched
successfully within 13 seconds, switch will enter a request success state.

The switch TSC model is shown as Figure 5(a). The hierarchy and priority of TSC
allows us to model the request and safety conditions independently. The model will reset
whenever a conflict request signal is received. It is not necessary to draw all possible
combinations explicitly, and this enables engineers to create models of complex system
compactly. The switch TSC model contains two signals g1 and g3, which signified re-
spectively that the request is in safety conditions and that switch has a breakdown. A
clock x is adopted to specify the required temporal behavior. The only 1 subcomponent
and 13 transitions instead of 3 subcomponents and 22 transitions TA needed with the
same requirements show that TSC has a better expressiveness for complex system. The
corresponding TA model of the TSC model is shown as Figure 5(b), which omits the
unnecessary states, and can be easily analyzed with UPPAAL.

5. Conclusions. A critical problem of safety assurance of railway signal software is how
to describe the functional and time requirements exactly and clearly. This paper proposed
a TSC method which extends the SyncCharts and supports the functional and clock
constraint modeling requirements of railway signal software. Model analysis of TSC is
performed indirectly through equivalent TA model analysis. This method has been applied
to designing computer based interlocking software, and the practice shows that the method
has a guiding significance for the design and development of railway signal software.

Probabilistic characteristic is another basic aspect of safety critical software, which
describes the randomness the system is exposed to, or the randomness the system it-
self exhibits. In future work, probability element is planned to be incorporated into the
formalism to support for modeling of timed and probabilistic aspects.

Acknowledgment. This work is partially supported by the China Railway Corporation
under Grants 2015X009-D and 2014X008-A. The authors also gratefully acknowledge the
helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] E. J. Joung, S. C. Oh, S. H. Park and G. D. Kim, Safety criteria and development methodology for
the safety-critical railway software, Proc. of the Telecommunications Energy Conference, Incheon,
Korea, 2009.

[2] J. Bengtsson and Y. Wang, Timed Automata: Semantics, Algorithms and Tools, Springer Berlin
Heidelberg, 2004.

[3] J. Wang, Timed Petri Nets: Theory and Application, Springer Science & Business Media, 2012.
[4] W. Ma, K. Zhao, X. Hei, G. Xie and J. Ma, Research on time petri net oriented UML statechart

and its application, ICIC Express Letters, vol.9, no.3, pp.929-935, 2015.
[5] A. David, M. O. Moller and Y. Wang, Formal Verification of UML Statecharts with Real-Time

Extensions, Springer Berlin Heidelberg, 2002.
[6] P. A. Hsiung, Y. R. Chen and Y. H. Lin, Model checking safety-critical systems using safecharts,

IEEE Trans. Computers, vol.56, no.5, pp.692-705, 2007.
[7] H. Dammag and N. Nissanke, Safecharts for specifying and designing safety critical systems, Proc.

of the 18th IEEE Symposium on Reliable Distributed Systems, Lausanne, Switzerland, 1999.
[8] D. Harel. Statecharts: A visual formalism for complex systems, Science of Computer Programming,

vol.8, no.3, pp.231-274, 1987.
[9] C. André, Semantics of SyncCharts, University of Nice-Sophia Antipolis, 2003.

[10] A. Charles, Representation and analysis of reactive behaviors: A synchronous approach, Computa-
tional Engineering in Systems Applications, 1996.

[11] Z Standards Panel, Formal Specification – Z Notation – Syntax, Type and Semantics, International
Standard, 2002.

[12] J. Philipps and T. Yoneda. Symbolic verification of statecharts, Technical Report of IEICE, vol.95,
no.212, pp.49-56, 1995.

[13] X. Hei, L. Chang, W. Ma and G. Xie, Using UML and petri nets for the design and verification of
a railway interlocking system, ICIC Express Letters, vol.5, no.8(B), pp.2825-2830, 2011.


