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Abstract. Time-series analysis relies on the appropriate statistical modeling, so time-
series model is crucial. The existing linear and nonlinear time-series models have certain
limitations. So a novel time-series model, General Expression for Nonlinear Autoregres-
sive (GNAR) model, was introduced. The approximation degree of Bernstein polynomial
in m-dimension simple space form was discussed based on approximation degree of one
dimension Bernstein polynomial to prove approximation ability of GNAR model for sys-
tems in mathematics. And the GNAR models were applied to tracking for chaotic system
and vibration system. The experiment results show that GNAR model demonstrates good
approximation ability.
Keywords: GNAR model, Nonlinear time series, Approximation ability, Bernstein poly-
nomial

1. Introduction. Time series analysis technology is a kind of system identification meth-
od which can establish models based on the inherent law of data with no need for system
inputs, so it has important applications in natural and social science field of industrial
process control, economy and biomedical engineering, etc. [1-3]. Time series analysis
depends on the proper statistical modeling; thus time-series model has become a very
important issue nowadays. Traditional linear time series models (ARMA model and
AR, MA and ARIMA model) have made a lot of progresses in modeling algorithm [4-7].
However, most systems in the practical engineering have the nonlinear characteristics. So
the linear models based on the stationarity assumptions are not applicable to identify the
nonlinearity and irregularity of data sequences.

The existing modeling methods of nonlinear time series can be divided into two types.
The first is traditional time series models combined with some nonlinear algorithms [8,9]
and the other applies heuristic techniques, such as genetic algorithm, neural network
and support vector machine (SVM), to system modeling and forecasting [10-13]. These
heuristic methods can approximate systems accurately, but they still have shortcomings;
for example, the genetic algorithm and neural network modeling methods need a great
number of training samples, and SVM model parameters are hard to determine.

So a novel time-series model, General Expression for Nonlinear Autoregressive (GNAR)
model, is introduced in this paper. First of all, the approximation degree of Bernstein
polynomial in m-dimension simple space form is discussed based on approximation degree
of one dimension Bernstein polynomial to prove approximation ability of GNAR model for
systems in mathematics. And then the GNAR models are applied to tracking for chaotic
system and vibration system. Prior knowledge is not essential when adopting GNAR
model for system modeling because there are linear and nonlinear terms in this model,
so the modeling process is simplified. The experiment results show that the model can
accurately approximate the linear and nonlinear time-series data and chaotic sequence.
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Therefore, GNAR model proposed can be applied to system identification, data tracking
and system prediction, etc.

2. Proving of Approximation Ability of GNAR Model for Systems.

2.1. GNAR model structure. The expression of GNAR model is:

wt =
∞∑

i1=1

αi1wt−i1 +
∞∑

i1=1

∞∑
i2=1

αi1,i2wt−i1wt−i2 + · · · +
∞∑

i1=1

· · ·
∞∑

ip=1

αi1,··· ,ip

∞∏
τ=1

wt−iτ + at

=
∞∑

j=1

∞∑
i1=1

· · ·
∞∑

ij=1

αi1,··· ,ij

j∏
τ=1

wt−iτ + at (1)

where wt−i presents the system observed data at the moment of t− i, i = 0, 1, 2, · · · ; αi1 ,
· · · , αi1,i2 , · · · are model parameters; at is white noise with zero mean.

When modeling in engineering, the model order usually is a limited value, so Equation
(1) is rewritten as:

wt =

n1∑
i1=1

αi1wt−i1 +

n2∑
i1=1

n2∑
i2=1

αi1,i2wt−i1wt−i2 + · · · +
np∑

i1=1

· · ·
np∑

ip=1

αi1,··· ,ip

p∏
τ=1

wt−iτ + at

=

p∑
j=1

nj∑
i1=1

· · ·
nj∑

ij=1

αi1,··· ,ij

j∏
τ=1

wt−iτ + at (2)

where p is the polynomial order;
∑n1

i1=1 αi1wt−i1 is the first order linear term, αi1 (i1 =
1, 2, · · · , n1) are linear coefficients;

∑n2

i1=1

∑n2

i2=1 αi1,i2wt−i1wt−i2 is the second order nonlin-

ear term, αi1,i2 (i1, i2 = 1, 2, · · · , n2) are the second order nonlinear coefficients;
∑np

i1=1 · · ·∑np

ip=1 αi1,··· ,ip
∏p

τ=1 wt−iτ is the pth order nonlinear term, αi1,··· ,ip (i1, · · · , ip = 1, 2, · · · , np)

are the pth order nonlinear coefficients; nj (j = 1, 2, · · · , p) are the memory steps of ev-
ery linear or nonlinear term. The model can be written as GNAR (p; n1, n2, · · · , np) in
abbreviation.

2.2. Convergence of GNAR model. For GNAR model shown in Equation (2), if
the observation data wt are bounded, there will be a constant C > 0 and |wt| ≤ C
(t = 1, 2, · · · ). Hence:

|GNAR(p; n1, n2, · · · , np)|

=

∣∣∣∣∣∣
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p∏
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=
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· · ·
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nj∑
i1=1

· · ·
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αi1,··· ,ijC
j (3)

Equation (3) indicates GNAR model must be convergence with the bounded system
outputs. A stable system with bounded inputs will give out bounded outputs in engineer-
ing, so GNAR model established for a stable system output sequence can be convergence.
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2.3. Approximation ability of GNAR model. Approximation degree of one dimen-
sion Bernstein polynomial is as follows [14]:

max
0≤x≤1

|g(x) − Bn(x)| ≤ Kω

(
1√
n

)
n = 1, 2, · · · (4)

where g(x) is a kind of continuous function defined on [0, 1]; Bn(x) is Bernstein polynomial,

Bn(x) =
n∑

i=0

g( i
n
)Ci

nxi (1 − x)n−i; K = 4306+837
√

6
5832

= 1.089887 · · · ; ω(δ) is the functional

moduli of continuity for g(x), ω(δ) = max
|x−y|≤δ

|g(x) − g(y)| (x, y ∈ [0, 1]).

According to the time series analysis modeling strategy, the system outputs wt can be
expressed as follows:

wt = f(wt−1, wt−2, wt−3, · · · ) (5)

Suppose the observation sequence length is m, then f in Equation (5) indicates a
function in m-dimension simple space form.

Suppose without loss of generality (original data can be normalized):
m∑

t=1

wt ≤ 1

wt ≥ 0
(t = 1, 2, · · · ,m) (6)

Bn(f, w) presents Bernstein polynomial in m-dimension simple space form:

Bf
n1,n2,··· ,nm

(wt−1, wt−2, · · · , wt−m) =

n1∑
i1=0

· · ·
nm∑

im=0

f

(
i1
n1

,
i2
n2

, · · · ,
im
nm

)
pi1,i2,··· ,im

n1,n2,··· ,nm
W (7)

where pi1,i2,··· ,im
n1,n2,··· ,nm

= Ci1
n1

Ci2
n2
· · ·Cim

nm
; W = wi1

t−1(1 − wt−1)
n1−i1wi2

t−2(1 − wt−2)
n2−i2 · · ·wim

t−m

(1 − wt−m)nm−im .
Approximation degree can be obtained:∣∣Bf

n1,n2,··· ,nm
(wt−1, wt−2, · · · , wt−m) − f(wt−1, wt−2, · · · , wt−m)

∣∣
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· · ·
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, · · · ,
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)
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W

≤
n1∑

i1=0

· · ·
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(1 + λ1 + · · · + λm)ω(δ1, δ2, · · · , δm)pi1,i2,··· ,im
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W
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(
1 +
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· · ·
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λlp
i1,i2,··· ,im
n1,n2,··· ,nm

W

)
(8)

where λl = ⌊(wt−l − il/nl)/δl⌋) (l = 1, 2, · · · ,m), and ⌊·⌋ presents taking the maximum
positive integer less than the value in this symbol; ω(δ1, δ2, · · · , δm) presents the functional
moduli of continuity for f(wt−1, wt−2, · · · , wt−m).

Suppose l = 1:
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· · ·
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λ1p
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∑
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√
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≤ 0.089887 · · · (9)
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By that analogy, setting δ2 = 1/
√

n2, δ3 = 1/
√

n3, · · · , δm = 1/
√

nm, the following
equation can be obtained:∣∣Bf

n1,n2,··· ,nm
(wt−1, wt−2, · · · , wt−m) − f(wt−1, wt−2, · · · , wt−m)

∣∣
≤ [1 + m(K − 1)]ω

(
1

√
n1

, · · · ,
1

√
nm

)
(10)

The functional moduli of continuity has the character that if δ → 0, f tends to be
constant and ω(δ1, δ2, · · · , δm) → 0. So we can conclude:

lim
n1,n2,··· ,nm→∞

∣∣Bf
n1,n2,··· ,nm

(wt−1, wt−2, · · · , wt−m) − f(wt−1, wt−2, · · · , wt−m)
∣∣ = 0 (11)

Equation (11) shows that Bernstein polynomial can be utilized to approximate the
functions in multidimension simple space form and Equation (10) gives its approximation
degree.

Expand W = wi1
t−1(1−wt−1)

n1−i1wi2
t−2(1−wt−2)

n2−i2 · · ·wim
t−m(1−wt−m)nm−im in Bn(f, w),

merge the similar items and set coefficients of wt−i as αi1 (i1 = 1, 2, · · · , n1), coefficients
of wt−i as αi1 (i1 = 1, 2, · · ·, n1), · · · , then GNAR model expressed in Equation (2) can be
obtained. Therefore, we can rewrite Equation (11) as follows:

lim
nj→∞

∣∣∣∣∣∣
p∑

j=1

nj∑
i1=1

· · ·
nj∑

ij=1

αi1,··· ,ij

j∏
τ=1

wt−iτ − f(wt−1, wt−2, · · · , wt−m)

∣∣∣∣∣∣ = 0 (12)

3. Numerical Example.

3.1. Approximation for chaotic system. Chaos describes a kind of deterministic dy-
namic system with random characteristics which appears frequently in nature and human
activity. Hence here gives two GNAR model tracking experiments of chaotic time series.

(1) ICMIC mapping
The expression of ICMIC mapping is:

wt = sin

(
a

wt−1

)
a ∈ (0,∞) t = 1, 2, · · · (13)

Control parameters a and initial values w1 of ICMIC mapping are generated randomly
as 0.06/0.160 or 0.06/0.165, and the system output sequences are illustrated in Figure 1.
The GNAR model tracking results are presented in Table 1 and Table 2.

As can be seen from the tables, GNAR model can fit ICMIC mapping well, and when
the control parameter is unchanged, GNAR model parameters are basically stable. GNAR

Figure 1. ICMIC sequences
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Table 1. Fitting GNAR model for ICMIC sequences (a/w1 is 0.06/0.160)

GNAR model
Residual sum

of squares

GNAR(2;1,1) wt = −7.186w2
t−1 + 2.853wt−1 9.35 × 10−2

GNAR(2;2,1) wt = −0.107w2
t−1 + 0.062wt−1 + 0.964wt−2 2.76 × 10−6

GNAR(2;2,2)
wt = −0.041w2

t−1 − 0.417wt−1wt−2 − 0.207w2
t−2 1.03 × 10−10

+0.060wt−1 + 1.102wt−2

GNAR(3;1,1,1) wt = 41.548w3
t−1 − 29.492w2

t−1 + 5.741wt−1 7.80 × 10−3

GNAR(3;2,1,1) wt = 0.810w3
t−1 − 0.671w2

t−1 + 0.170wt−1 + 0.946wt−2 2.11 × 10−7

Table 2. Fitting GNAR model for ICMIC sequences (a/w1 is 0.06/0.165)

GNAR model
Residual sum

of squares

GNAR(2;1,1) wt = −7.316w2
t−1 + 2.874wt−1 7.02 × 10−2

GNAR(2;2,1) wt = −0.107w2
t−1 + 0.062wt−1 + 0.964wt−2 1.74 × 10−6

GNAR(2;2,2)
wt = −0.041w2

t−1 − 0.414wt−1wt−2 − 0.206w2
t−2 4.82 × 10−11

+0.060wt−1 + 1.103wt−2

GNAR(3;1,1,1) wt = 42.561w3
t−1 − 29.964w2

t−1 + 5.766wt−1 5.10 × 10−3

GNAR(3;2,1,1) wt = 0.815w3
t−1 − 0.670w2

t−1 + 0.168wt−1 + 0.947wt−2 1.15 × 10−7

model fitting precision of ICMIC mapping is greatly influenced by memory step length,
so the memory step length of linear and nonlinear terms is at least 2.

(2) Chebyshev mapping
The expression of Chebyshev mapping is:

wt = cos(k cos−1 wt−1) k = 4 w ∈ [−1, 1] t = 1, 2, · · · (14)

Initial values w1 of Chebyshev mapping are generated randomly as 0.360 or 0.365 and
the system output sequences are illustrated in Figure 2.

The tracking curves of GNAR(3;10,6,6) for Chebyshev mapping which have the residual
sum of squares of 3.444 and 1.494 are shown in Figure 3 and Figure 4.

According to real function analysis, one-dimension chaotic systems including Logistic,
Sine, ICMIC, Tent, Bernouilli shift and Chebyshev mapping, etc. can be regarded as
real functions with the value domain of wt and definitional domain of wt−1 (t = 2, 3, · · · ).
Based on real function characteristics, chaotic mapping can be expanded into power series

Figure 2. Chebyshev sequences
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Figure 3. GNAR(3;10,6,6) fitting of Chebyshev sequences (initial value is
0.360)

Figure 4. GNAR(3;10,6,6) fitting of Chebyshev sequences (initial value is
0.365)

of wt−1 whose expression is consistent with GNAR model. This also illustrates GNAR
model can approximate one-dimension chaotic systems accurately on the other hand.
Other examples can be found in reference [15].

3.2. Approximation for vibration system. Vibration signals contain abundant infor-
mation about the status of the mechanical system. They are widely used in parameter
testing, quality evaluation, condition monitoring and fault diagnosis for they have the ad-
vantages including easy obtaining, wide range diagnostic and convenient to set up online
monitoring system. So here gives experiment to test GNAR model approximation ability
for vibration system.

Taking the vibration system excited by square wave for an example, its system dynamics
equation is as follows:

ẍ + 2µẋ + ω2
0x + εω2

0x
3 = F (t) (15)

A model describing the Equation (15) is established in MATLAB Simulink platform, as
shown in Figure 5 and the square wave impulse is shown in Figure 6. Setting the system
parameters µ = 0.2, ω0 = 1.5 and ε = 10.5, the time series can be obtained shown in
Figure 7 with sampling length of 50 s and sampling frequency of 100 Hz.

GNAR(3;2,0,1) is adopted to fit the system outputs and the model tracking curve is
shown in Figure 8. The experiment result displays a high fitting precision of GNAR model
and the average modeling relative error is 0.4203%.
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Figure 5. Model describing Equation (15) in MATLAB

Figure 6. Square wave impulse

Figure 7. Time series in oscilloscope of MATLAB Simulink platform

4. Conclusions. In this paper, the approximation ability of GNAR model for systems
is proved in mathematics based on approximation degree of Bernstein polynomial in m-
dimension simple space form. GNAR model can reflect the internal motion system, and it
is easy to interpret and understand. Tracking experiments of chaotic system and vibration
system show its good approximation ability.

Because of the complexity of the nonlinear system, there are no uniform and normative
theory and index to evaluate nonlinear system modeling so far. As a novel nonlinear
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Figure 8. GNAR(3;2,0,1) fitting of vibration system

mathematical model, GNAR model still has to be discussed in modeling process, such as
how to determine the model orders, parameters estimation and model adaptability testing
or goodness discrimination. These are our further research contents.
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