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Abstract. This paper proposes on-demand type feedback controller for self-tuning gen-
eralized minimum variance control (GMVC) in state-space representation using coprime
factorization. GMVC can be extended by using coprime factorization, and the extended
controller introduces a new design parameter. The parameter can change the characteris-
tics of the extended controller without changing the closed-loop characteristics. In order
to design safe systems, strong stability systems are effective because both the closed-loop
system and its controller are stable. So the parameter mentioned above is useful to design
such a system. Moreover, focusing on feedback signal, the extended controller can adjust
the magnitude of the feedback signal. It means that the proposed controller has the abil-
ity to make the magnitude of the feedback signal be zero when the control objective was
achieved. In other words, the feedback signal of the proposed method emerges on demand
of achieving the control objective. Therefore, this paper explores the design method of
on-demand type feedback controller using self-tuning GMVC in state-space representa-
tion. A numerical example is given in order to check the characteristics of the proposed
method.
Keywords: On-demand type feedback controller, Self-tuning controller, Generalized
minimum variance control, Coprime factorization

1. Introduction. GMVC has been proposed by Clarke and others [1]. GMVC is one of
the control methods for application in industry. This control method can be designed by
an evaluation index called as generalized output which is selected to make the closed-loop
system stable. The control law is derived by minimizing the variance of generalized output.
Once the generalized output is selected, the derived controller cannot be re-designed unless
the poles of closed-loop system are changed. In the case of considering the application in
industry, it is desirable for both of the closed-loop system and the controller to be stable in
view point of safety. That is, even if the closed-loop characteristic has been designed, it is
desirable that the flexibility of re-designing the controller characteristic remains because
of designing safe systems. Authors have proposed the extended GMVC design method
[2, 3]. Compared to conventional GMVC, the extended method newly introduces a design
parameter by coprime factorization [4, 5]. In the method, the controller’s poles can be re-
designed by the parameter without changing the poles of closed-loop system. Therefore,
a strong stability system, which means that both of closed-loop system and controller
are stable, and can be obtained by re-designing stable controller. Although the authors
have proposed such a design method [6] and a concept of strong stability rate [7, 8] by
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coprime factorization and showed that strong stability systems can be obtained, and the
previous researches have not focused on feedback signal clearly. Under the assumption
that the controlled plant is stable, the research about strong stability rate has focused on
a stable open-loop output. For example, if the value of strong stability rate becomes 1,
the controlled output becomes equal to reference signal in the steady state whether the
feedback loop is cut or not. This situation indicates that the control objective is achieved
and the feedback signal is not demanded (it means that the feedback signal becomes
zero) in the steady state. In other words, new concept controller, whose feedback signal
emerges according to the demand to make the controlled output follow the reference
signal and disappears if the controlled output becomes equal to the reference signal,
can be considered by coprime factorization. Although the authors have proposed on-
demand type feedback controller for GMVC using coprime factorization through transfer
function approach [9] and state-space representation [10], the self-tuning controller in
state-space representation has not been proposed. Therefore, this paper proposes on-
demand type feedback controller in state-space representation for self-tuning GMVC. The
advantages of the proposed on-demand type feedback controller for self-tuning GMVC
in state-space representation compared with previous ones are the facility of extension
to multi-input multi-output systems and the adaptation ability to model uncertainty. A
numerical example is shown in order to check the characteristics of the proposed controller.

This paper is organized as follows. Section 2 describes problem statement and self-
tuning GMVC in state-space representation. Section 3 extends self-tuning GMVC through
coprime factorization and gives the proposed controller. Section 4 shows a numerical
example to explore the characteristics of on-demand type feedback controller. Section 5
concludes this paper.

Notations. This paper assumes that the controlled plant is stable. z−1 means backward
shift operator z−1y(t) = y(t − 1). A[z−1] and A (z−1) mean polynomial and rational
function with z−1 respectively. Steady state gain A(1) of transfer function is calculated
as z−1 = 1 under the assumption that signals such as input and output for system does
not change with regard to time t.

2. Self-Tuning GMVC in State-Space Representation. The following single-input
single-output system is considered.

A
[
z−1

]
y(t) = z−kmB

[
z−1

]
u(t) + ξ(t) (t = 0, 1, 2, · · · ) (1)

where A [z−1] = 1 + a1z
−1 + · · · + anz

−n and B[z−1] = b0 + b1z
−1 + · · · + bn−1z

−(n−1) are
assumed to be coprime. u(t) and y(t) are the input and the output respectively. km is
the time delay and ξ(t) is a white Gaussian noise with zero mean. The control objective
is that the output y(t) has a desirable response to reference signal r(t). To achieve this
objective, the conventional GMVC minimizes the objective function J = E [Φ2(t + km)].
J is averaged over the noise ξ(t), ξ(t− 1), · · · . Moreover, Φ(t + km) = P [z−1] y(t + km) +
Q[z−1]u(t) − R[z−1]r(t) is named as generalized output. The design polynomials P [z−1],
Q[z−1] and R[z−1] are assumed to be constant (P [z−1] = 1, Q[z−1] = q0 and R[z−1] = r0)
in this paper. In order to obtain GMVC law in state-space representation, Equation (1)
is expressed as the following observable canonical form.

x(t + 1) = Apx(t) + bpu(t) − apξ(t) (2)

y(t) = cT
p x(t) + ξ(t) (3)

Ap =

[
In+km−2

−ap 01×(n+km−2)

]
, ap =

[
a1, · · · , an 01×(km−1)

]T

bp =
[
01×(km−1) b0, · · · , bn−1

]T
, cp =

[
1, 01×(n+km−2)

]T
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From (2) and (3), y(t + km) can be given as

y(t + km) = cT
p Akm

p x(t) + b0u(t) +
km−1∑
i=0

cT
p Akm−1−i

p apξ(t + i) + ξ(t + km) (4)

The output prediction ŷ(t+km|t) can be defined by eliminating the future values of noise
from (4).

ŷ(t + km|t) = cT
p Akm

p x(t) + b0u(t) (5)

Then the km-ahead predicted value Φ̂(t + km|t) of the generalized output is given by

Φ̂(t + km|t) = cT
p Akm

p x(t) + (b0 + q0)u(t) − r0r(t) (6)

Because Φ̂(t + km|t) and the noise term in Φ(t + km) have no correlation with each other,

the control input u(t) which minimizes J is obtained by choosing u(t) as Φ̂(t + km|t) = 0.

u(t) =
1

b0 + q0

(
r0r(t) − cT

p Akm
p x̂(t)

)
(7)

In order to construct a conventional self-tuning controller, an adaptive observer is intro-
duced, which gives the estimated value of state x(t) and the identified plant parameters.
Therefore, the controlled plants (2) and (3) are firstly deformed as follows.

x(t + 1) = Fx(t) + (−ap + f)y(t) + bpu(t) (8)

y(t) = cT
p x(t) (9)

F =

[
In+km−2

−f 01×(n+km−2)

]
, f = [f1, · · · , fn 01×(km−1)]

T

F is chosen to be stable and the eigenvalues are the roots of the polynomial f [z−1] =
1 + f1z

−1 + · · · + fnz
−n. Next, R1(t),R2(t) ∈ R(n+km−1)×(n+km−1) are defined as

R1(t + 1) = FR1(t) + Iy(t), R1(0) = 0

R2(t + 1) = FR2(t) + Iu(t), R2(0) = 0

Using R1(t) and R2(t), (8) and (9) are expressed by the following equations.

x(t) = R(t)θ (10)

y(t) = ζT(t)θ (11)

R(t) = [R1(t) R2(t)], ζT(t) =
[
cp

TR1(t) cp
TR2(t)

]
, θT =

[
(−ap + f)T bp

T
]

where the terms with the initial state value x(0) are removed from Equations (10) and
(11), since x(0) decreases exponentially.

Replacing the plant parameter vector θ with the identified plant parameter vector θ̂(t)
in Equations (10) and (11), the adaptive observer is obtained as

x̂(t) = R(t)θ̂(t) (12)

ŷ(t) = ζT(t)θ̂(t) (13)

The parameter identification law is given by

θ̂(t) = θ̂(t − 1) − Γ(t − 1)ζ(t)ε(t), ε(t) =
ζT(t)θ̂(t − 1) − y(t)

1 + ζT(t)Γ(t − 1)ζ(t)

Γ(t) = Γ(t − 1) − Γ(t − 1)ζ(t)ζT(t)Γ(t − 1)

λ + ζT(t)Γ(t − 1)ζ(t)
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where 0 < λ ≤ 1, Γ(0) = αI, 0 < α < ∞. Then the conventional self-tuning GMVC law

in state-space representation using adaptive observer can be given by (7) using θ̂(t) and
x̂(t).

3. Extended Self-Tuning GMVC in State-Space Representation Using Co-
prime Factorization. In order to introduce a new design parameter, this section gives
the coprime factorization of the conventional GMVC in state-space representation and
extends it, under the assumption that the identified plant parameters converge on true
values.

The coprime factorization approach considers the family of stable rational functions as
follows:

RH∞ =

{
G

(
z−1

)
=

Gn [z−1]

Gd [z−1]

}
where Gd [z−1] is stable polynomial.

Remark 3.1. Because Gd[z
−1] = 1 is stable polynomial, the rational function whose

denominator is equal to be 1, that is, the polynomials belong to RH∞.

Assuming that ξ(t) = 0, the transfer function of (2) and (3) is given by a ratio of
rational functions in RH∞ which is the family of stable rational functions.

G
(
z−1

)
= N

(
z−1

)
D−1

(
z−1

)
= D̃−1

(
z−1

)
Ñ

(
z−1

)
= cT

p (zI − Ap)
−1bp (14)

where N (z−1) , D (z−1) ∈ RH∞ are right coprime factorization and Ñ(z−1), D̃(z−1) ∈
RH∞ are left coprime factorization. The rational functions X(z−1), Y (z−1) ∈ RH∞ are
assumed to denote the solutions of Bezout equation X(z−1)N(z−1) + Y (z−1)D(z−1) = 1.
Because it is assumed that the identified plant parameters converge on true values, the
adaptive observer can be expressed as the following form.

x̂(t) = (zI − F )−1(−ap + f)y(t) + (zI − F )−1bpu(t) (15)

Then the right coprime factorization of N(z−1) and D(z−1), and the solutions X(z−1)
and Y (z−1) of Bezout equation are given by the controllers (7) and (15) [5].

N
(
z−1

)
= cT

p (zI − Ap + bpL)−1bp, D
(
z−1

)
= 1 − L(zI − Ap + bpL)−1bp

X
(
z−1

)
= L(zI − F )−1(−ap + f), Y

(
z−1

)
= 1 + L(zI − F )−1bp

L =
1

b0 + q0

cT
p Akm

p , K
(
z−1

)
=

r0

b0 + q0

From these equations, the conventional control law (7) can be expressed as the following
stabilizing controller through coprime factorization.

u(t) = Y −1
(
z−1

)
K

(
z−1

)
r(t) − Y −1

(
z−1

)
X

(
z−1

)
y(t) (16)

Then the extended controller of the conventional control law (7) can be given as the
following equation.

u(t) =
1

b0 + q0

(
r0r(t) − cT

p Akm
p x̂(t)

)
+ U

(
z−1

) (
cT

p x̂(t) − y(t)
)

(17)

where U(z−1) ∈ RH∞ is a new design parameter introduced in the conventional GMVC
and x̂(t) is the estimated value of x(t) obtained by the adaptive observer. Moreover, the
controller (17) has the following form in coprime factorization.

u(t) = C1

(
z−1

)
r(t) − C2

(
z−1

)
y(t) (18)

C1

(
z−1

)
=

(
Y

(
z−1

)
− U

(
z−1

)
Ñ

(
z−1

))−1

K
(
z−1

)
C2

(
z−1

)
=

(
Y

(
z−1

)
− U

(
z−1

)
Ñ

(
z−1

))−1 (
X

(
z−1

)
+ U

(
z−1

)
D̃

(
z−1

))
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where Ñ(z−1) = cp(zI − F )−1bp and D̃(z−1) = 1 − cp(zI − F )−1(−ap + f) are the left
coprime factorization of the systems (2) and (3).

In order to design on-demand type feedback controller, the extended controller (17)

is deformed by defining u1(t)
△
= 1

b0+q0
r0r(t) − U(z−1)y(t) and u2(t)

△
= 1

b0+q0
cT

p Akm
p x̂(t) −

U(z−1)cT
p x̂(t),

u(t) = u1(t) − u2(t)

=

(
1

b0 + q0

r0r(t) − U
(
z−1

)
y(t)

)
−

(
1

b0 + q0

cT
p Akm

p − U
(
z−1

)
cT

p

)
x̂(t) (19)

u1(t) is generated from the reference signal and the measured output, and it is named as
pseudo-feedforward signal in this paper. u2(t) is state feedback signal and it is given from
the adaptive observer. The on-demand type feedback controller, which means that the
feedback signal becomes zero when the controlled output becomes equal to the reference
signal, can be obtained if u2(t) becomes zero and the steady state gain of closed-loop
system N(1)K(1) is designed to be 1 (this means that the controlled output becomes
equal to the reference signal). So this paper calculates r0 as follows, which is one of the
GMVC’s parameters.

r0 =
b0 + q0

cT
p (I − Ap + bpL)−1 bp

Then the steady state gain of closed-loop system becomes N(1)K(1) = 1. Moreover,
because the closed-loop system y(t) = N(z−1)K(z−1)r(t) is independent of U(z−1), and
u2(t) becomes zero if an appropriate U(z−1) is given, that is, the on-demand type feedback
controller is obtained.

4. Numerical Example. In this section the controlled plant A[z−1] = 1 + 0.6z−1 +
0.7z−2, B[z−1] = 0.5 − 1.5z−1, km = 1 and the generalized output Φ(t + km) = y(t +
1) + 0.8u(t) − r0r(t) are given. The white Gaussian noise ξ(t) is with zero mean and the
variance 0.012. The adaptive observer’s poles are set to −0.9 and 0.6, and the nominal
values of the controlled plant parameters are set to be 0.9 × true values. The parameters
of parameter identification law are set to be λ = 1 and Γ(0) = I. The reference signal r(t)
is a rectangular signal with amplitude 1 from the beginning of simulation to the 150th step
and 1.5 after the 151st step. The total number of simulation steps is 300. The closed-loop’s
poles when the identified parameters converge on true values are |0.3923 ± 0.5262i| < 1
and stable. Figure 1 shows the plant output by the proposed method using the self-
tuning controller (19) with adaptive observer, where the proposed controller uses the newly
introduced parameter U(z−1) as U(z−1) = 1.6542. On the other hand, the conventional
controller can be derived by selecting the parameter U(z−1) as U(z−1) = 0 (the extended
controller (19) becomes equal to the conventional controller (7) when U(z−1) = 0). Figure
2 shows the control input by the proposed self-tuning controller (19). This figure shows
(a) control input to the controlled plant, (b) pseudo-feedforward signal defined in this
paper, which means u1(t) in (19), and (c) state feedback signal generated by adaptive
observer, which means u2(t) in (19). From Figure 2, it can find that the state feedback
signal in the proposed method emerges in order to follow the reference signal, and its
signal becomes almost zero when the controlled output becomes equal to the reference
signal. When the reference signal is changed from 1 to 1.5 after the 151st step, the state
feedback signal emerges until the controlled output becomes equal to the reference signal.
Therefore, on-demand type feedback controller, which means that the feedback signal
emerges on demand of making the controlled output follow the reference signal, can be
obtained. Figure 3 and Figure 4 show the estimation errors of state variables and the
identified plant parameters respectively. Their figures indicate that the proposed method
can estimate both the state variables and the plant parameters.
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Figure 1. The proposed method (output)
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Figure 2. The proposed method (input): (a) control input, (b) pseudo-
feedforward signal generated by reference signal and measured output, (c)
state feedback signal generated by adaptive observer
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Figure 3. Estimation errors of state variables in the proposed method
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Figure 4. Identified plant parameters in the proposed method: (a) iden-

tified parameters â1(t) and â2(t), (b) identified parameters b̂0(t) and b̂1(t)
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5. Conclusion. In this paper, on-demand type feedback controller for self-tuning GMVC
in state-space representation was proposed. The proposed controller can make the state
feedback signal be almost zero when the controlled output becomes almost equal to the
reference signal through the new design parameter U(z−1). If the reference signal is
changed, the state feedback signal emerges on demand of making the controlled output
follow the reference signal. The proposed self-tuning controller was derived by extending
the conventional self-tuning GMVC in state-space representation through coprime factor-
ization and adaptive observer. The parameter U(z−1) was introduced to the extended
GMVC. As future works, the formulation of the design parameter U(z−1) is needed, as
with the formulation derived in transfer function based GMVC [9]. Moreover, there is an
extension to multi-input multi-output systems of this method.
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