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ABSTRACT. This paper presents an adaptive teaching-learning-based optimization (ATL-
BO) algorithm as a reliable and efficient way of global mazimum power point tracking
(GMPPT) for photovoltaic module arrays (PVMAs) under a variety of shaded condi-
tions. This is done by the introduction of an adaptive teaching factor taking account of
the past learning experience of an MPP tracker. A combined use of a smart tracking
and a partial self-learning mechanism can not only speed up a tracking process, but also
improve the steady-state tracking performance. Tracking performances are simulated on
various testing cases using MATLAB, and the presented adaptive algorithm is validated
to outperform a typical counterpart in terms of dynamic and steady-state tracking per-
formance.

Keywords: Photovoltaic module array (PVMA), Partial shading, Maximum power
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1. Imtroduction. Over recent years, there have been a great volume of publications on
the issue of MPP tracking under shaded conditions. So far, the most frequently em-
ployed as well as representative tracking algorithms cover differential evolution (DE) [1],
ant colony optimization (ACO) [2], artificial bee colony algorithms (ABC) [3], etc. DE
algorithm is performed in a similar way as a genetic algorithm. A real number coding
is performed on a specific population, and a global search for the optimum is conducted
via differential evolution and exponential crossover strategy. In [4], DE is applied to a
PVMA, and MPP tracking performance is simulated but without experimental valida-
tion. Furthermore, as suggested by Storn in [5], individual mutation strategy requires an
expression containing 5 terms, which slows down a tracking process and requires care-
ful comparison in the progress of binary coding using a microcontroller. In contrast,
ACO refers to a probabilistic algorithm seeking out an optimal route. As ants forage,
pheromone is released to attract and guide others as a way to avoid a time-consuming
random search, and an optimal foraging route is found accordingly. As explicitly pointed
out in [6], ACO prevents an MPP tracker from being trapped at a local MPP, since the
conversion between the pheromone density and the route travelled becomes a random
number. However, ACO is experimentally found to give rise to a long tracking process,
when applied to MPPT in a PVMA, for the reason that the updated pheromone density is
an exponential expression. In regards to ABC, once scout bees have found a food source,
waggle dance is employed as a way to communicate the location of nectar to others for
more food collection. Nonetheless, a major disadvantage in ABC is that the quality of
search performance cannot be well maintained due to a random foraging process, and the
number of bees demonstrates an effect on the dynamic and steady-state tracking perfor-
mance when foraging, as presented in [7]. Moreover, when applied to MPPT in PVMAs,
statistical comparison on the tracking performance between ABC and a particle swarm
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optimization (PSO) algorithm indicates that it takes ABC 5-6 seconds to track the MPP,
meaning that there is still room for tracking performance improvement.

In the literature, smart algorithms have been successfully integrated into conventional
algorithms to address the issue of MPP tracking in PVMAs, say, PSO and P&O in [§]
and PSO and a genetic algorithm (GA) in [9]. Although this move is able to locate the
wanted global MPP, a major problem is a slow dynamic response. For this sake, an adap-
tive algorithm is presented herein as an improved version of the teaching-learning-based
optimization (TLBO) algorithm [10]. Without constraints on optimization population, it
is an easy-to-implement algorithm, has excellent adaptability, and requires a small number
of design parameters. Underlain by [11], a tracking mechanism is developed in an effort
to improve the global MPP tracking performance. Consequently, the presented adaptive
algorithm is validated to outperform the existing MPP tracking algorithms in the litera-
ture, particularly when dealing with the multiple peak problem on a P-V characteristic
curve of a PVMA. In this paper, Section 2 describes briefly the implementation proce-
dure of the typical and proposed adaptive TLBO algorithms to track the actual maximum
power points when applied to multipeaked output characteristic curves of PVMAs. Then,
the characterizations of PVMAs are illustrated in Section 3. In Section 4, some simula-
tion results are made to demonstrate the effectiveness of the proposed adaptive TLBO
algorithm. In Section 5, conclusions are given.

2. The Typical and Proposed Adaptive TLBO Algorithms. Firstly proposed by
Rao and Patel in 2011 [12], a typical teaching-learning-based optimization algorithm
was developed as a solution to a complicated constrained optimization problem. Simply
speaking, it simulates an interactive teaching and learning process between students and
teachers, such that the overall performance of a class can be improved. During the process,
all the students and the teacher serve as the particles and the one with the best fitness
value.

2.1. Typical TLBO algorithm. A typical TLBO algorithm is stated as follows.

1) Specify the number of students N, the number of iterations £, teaching step r; and
learning factor T.

2) Initialize a class, and randomly specify the learning ability of each student X.

3) Substitute the initial ability into the objective function for the assessment of each
student’s grade.

4) One of the best students is selected as the teacher Xieqcher, the difference between two
means (Different_Mean) is given by

Different_Mean; = 1;(Xieacher — Tr X M); 1=1,2,... | F (1)
and each student’s grade is updated as
Xk,new = Xk,old + Diﬁerent,Meani; k= 1, 2, ey Np (2)

where M is the mean value of all the students’ grades.

5) Suppose that 2 randomly selected students, Xp and X, learn from each other. More
precisely, it is that the one with poor performance, as a mentee, learns from the other
as a mentor, and both are updated as

, i (Xkp — Xowr) i Xp > Xg
Xk,new = Xk,new + { Ti(XQ(ik) — Xk,P) if Xp < XQ (3)

i=1,2....B;, k=1,2,...,Np

6) A tracking task terminates once the desired global optimum solution is found or the
maximum number of iterations is reached.
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Table 1 gives the values of all the parameters involved in a typical TLBO algorithm,
and nomenclature is given as follows.

N,: The total number of the students involved.

E: The number of iterations, i.e. the number of teaching/learning among students.

M: The mean value of all the students’ grades.

r;: The teaching step, a random parameter with various characteristics between 0 and
1.

Tr: Teaching factor, a random parameter = 1 or 2, representing the teacher’s teaching
ability to students.

TABLE 1. Parameter settings involved in a typical TLBO algorithm

N, | 4

E 140

r; | a random number between 0 and 1
Tr|1lor?2

As explicitly stated above, T is specified as either 1 or 2 in a typical TLBO algorithm.
Consequently, a major problem is that the learning ability variation among students
cannot be reflected by a fixed-valued Tr. This move may lead to a poor performance with
regard to students’ learning. For this sake, an adaptive T is presented here as a way to
improve the performance of a typical TLBO algorithm.

2.2. Proposed adaptive TLBO algorithm. An adaptive TLBO algorithm is presented
herein as a modified version of the typical one discussed in the preceding section, and Steps
4-5 are modified as follows.

Modification 1: Tk is made adaptive as

X

Xteacher (4>

Modification 2: during a learning process, a student learns from another student who
can benefit the mentee the most.

Modification 3: taking account of the prior learning experience, each student’s learning
status is made adaptive, and is updated as

/ = X o new + 1 (X} - X! ); i=1,2,...,F; =1,2,...,Np (5)

i,k,new i,k,new i—1,k,new

T

In Equation (1), Tr decreases with Different_Mean if Xeqcher and M are kept constant
during a teaching/learning process. However, in a PVMA tracking event, a large tracking
step is expected when the operation point is distant from the MPP, and vice versa.
Accordingly, when applied to a PVMA tracking task, X;, X and Xieuener are replaced
with the power Py, P| and the tracked maximum power Pie,cner up to now, respectively,
in Modification 1, and Tr in Equation (4) is rewritten as

Py
T = 6
o Pteacher ( )
P
Trpy = —2 7
2 Pteacher ( )

The tracking mechanism is illustrated with Figure 1. To begin with, the operation point
stays distant from the MPP, the current grade of a student is symbolized as X, and then
the PVMA output power is represented as P;. Equations (6) and (1) give a low value
of Try and a high value of Different_Mean, respectively, meaning that the MPP tracker
makes a huge step toward the MPP. Since the operation point now stays closer to the
MPP, the current grade of the student is symbolized as X], and then the PVMA output
power is represented as P| accordingly. The condition P| > P; gives rise to a higher value
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FiGURE 1. An illustration of the adaptive tracking mechanism via the tun-
ing parameter Tr

of Ty and a low value of Different_Mean as compared with the previous case, meaning
that the tracker now makes a smaller step toward the MPP in an adaptive manner. As
stated in Modifications 2 and 3, a student with a current learning ability X7, ., takes
into consideration his/her previous learning ability X , , ,.,, when autonomously leaning
from the mentor. This move can speed up the learning/teaching process, and an MPP
tracker becomes able to converge toward the global, rather than a local, MPP efficiently

and reliably:.

3. Characterization of PVMA. In most cases, PVMA is configured in a way that
meets the specified output power requirement. However, the P-V characteristic curves of
a PVMA distort, even with multiple peaks, due to the dust, stain on the module surface,
or even the shadow cast by high-rise buildings. In this study, tracking performance tests
are conducted on various array configurations, built with a SANYO HIP 2717 PV module
[13] as the building block, under shadeless and partially shaded conditions. Respectively
illustrated in Figure 2 is a family of simulated P-V characteristic curves for a 4-series-1-
parallel array with the number of 30% shaded modules as a parameter. An observation
in Figure 1 reveals that the shading effect not only results in multiple peaks on the P-
V curves, but also represses the maximum output power as the number of the shaded
modules increases.

120
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20 /
Four modules at 30% shadin
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FIGURE 2. A family of P-V characteristic curves for a 4-series-1-parallel
PVMA with the number of 30% shaded modules as a parameter
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4. Simulated Tracking Performance Comparison. Table 2 gives 4 array configu-
rations as the testing cases. All the configurations are built with a SANYO HIP 2717
PV module as the building block. Comparisons on simulated MPP tracking performance
using MATLAB are made between a typical TLBO algorithm and the presented adaptive
counterpart.

TABLE 2. Tracking case description

. . Number of peaks
Case Shading conditions i1 the P-V curve
2-series-1-parallel:
I 0% shading+40% shading Double peaks
3-series-1-parallel: .
2 0% shading+30% shading+70% shading Triple peaks
3 4-series-1-parallel: Quadruple peaks
0% shading+30% shading+50% shading+70% shading pep
4 2-series-2-parallel: Double peaks
(30% shading+ 0% shading)// (0% shading+ 50% shading) P

[lustrated in Figure 3 is a simulated P-V characteristic curve for Case 1. As listed in
Table 2, Case 1 is a 2-series-1-parallel array configuration with a 40% shaded module.
There exist 2 peaks on the simulated curve, where the global MPP stands on the right.
As can be found in Figure 4, both algorithms can as expected track the global MPP, while
the adaptive counterpart requires a smaller number of iterations.

Presented in Figure 5 is a simulated P-V characteristic curve for Case 2. It is a 3-series-
1-parallel array configuration, and the global MPP appears in the center. As illustrated
in Figure 6, both algorithms can track the global MPP as in Case 1, while the typical

Pai=35.5W— :
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FIGURE 3. A simulated P-V characteristic curve for Case 1
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FI1GURE 4. Tracking performance comparison between the presented adap-
tive TLBO algorithm and a typical counterpart in Case 1
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FIGURE 5. A simulated P-V characteristic curve for Case 2
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FI1GURE 6. Tracking performance comparison between the presented adap-
tive TLBO algorithm and a typical counterpart in Case 2

TLBO algorithm requires a greater number of iterations as the number of PV modules
connected in series increases, and a significant tracking performance superiority is seen in
this case using the proposed algorithm.

Exhibited in Figure 7 is a simulated P-V characteristic curve for Case 3. The number
of peaks on the P-V curve is found to increase with that of PV modules connected in
series. Furthermore, the four peaks on the curve result from the four inconsistently shaded
modules. As compared in Figure 8, the presented adaptive counterpart outperforms a
typical TLBO algorithm to a great extent, although they both successfully track the
global MPP in the end.
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FIGURE 7. A simulated P-V characteristic curve for Case 3

Demonstrated in Figure 9 is a simulated P-V characteristic curve for Case 4. It is a
2-series-2-parallel array configuration built with inconsistently shaded modules. There
are two peaks on the P-V curve, and the global MPP stands on the right side. A tracking
performance comparison is illustrated in Figure 10, and the adaptive counterpart is found
again to outperform a typical one, as in the previous cases.
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F1GURE 8. Tracking performance comparison between the presented adap-
tive TLBO algorithm and a typical counterpart in Case 3
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Ficure 10. Tracking performance comparison between the presented
adaptive TLBO algorithm and a typical counterpart in Case 4

TABLE 3. Simulated tracking performance comparison between this pro-
posal and a typical TLBO counterpart

Case Number of peaks in Average iteration times
the P-V curve Typical TLBO | Adaptive TLBO
1 Double peaks 12.7 10.1
2 Triple peaks 14.2 5.5
3 Quadruple peaks 23.5 15.7
4 Double peaks 13.2 5.6

In this work, simulated MPP tracking performances are compared between a typical
TLBO algorithm and the presented adaptive counterpart. There are 4 testing cases, each
with 40 simulations, and Table 3 gives the average number of iterations for comparison
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purposes. The adaptive algorithm shows a clear tracking performance advantage over a
typical one.

5. Conclusions. This work presents an adaptive TLBO algorithm as a way to improve
the global MPP tracking performance for the operation of a PVMA. This is done simply
by the introduction of an adaptive teaching factor. In addition, taking account of past
learning experience, a student is permitted to learn autonomously from another student
as a mentor. In this manner, the performance of an MPP tracker can be improved to a
great extent. Tracking performance simulations are conducted on four array configurations
built with partially shaded modules, and the proposal is validated to outperform a typical
TLBO algorithm considerably in terms of the number of iterations required, particularly
when dealing with the multi-peak problem on a P-V characteristic curve. In the future,
some experimental results will be made to demonstrate the effectiveness of the proposed
MPPT method based on modified TLBO algorithm for practical photovoltaic system.
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