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Abstract. Suspiciousness metrics based on failed execution spectrum are ineffective
for fault localization without any failed execution, and with test suites of different types
and sizes, the performance of spectra-based suspiciousness metrics is not stable. In this
article, both failed execution spectrum and successful non-execution spectrum are consid-
ered as decisive factors, failed non-execution spectrum and successful execution spectrum
are used as secondary factors in computing suspiciousness of each block to be the fault,
and two new suspiciousness metrics (short as F4N1 and F2N2) are designed. To obtain
more statistical information of the fault, the concept of execution trace self-information
is proposed, and then two weights are constructed for weighting the complex expressions
respectively in F4N1 and F2N2. Therefore, two weighted suspiciousness metrics F4N1W
and F2N2W are acquired. Then a fault localization algorithm based on proposed suspi-
ciousness metrics is given to apply these metrics to fault localization. Experiments are
conducted on the program in the Siemens Suite with test suites of different types and
sizes. It is shown that in most cases, fault has a higher suspiciousness ranking obtained
by our metrics, especially by our weighted metrics. And fewer blocks need to be examined
until the fault is located.
Keywords: Software fault localization, Program spectra-based metric, Execution trace
self-information, Suspiciousness computation metric

1. Introduction. Software testing is important to confirm the reliability of the software
system, especially for large software systems. Because of the complexity of the software
system, software testing is time-consuming, and executing all test cases is infeasible. Thus,
a regression test selection technique [1] and a test selection strategy based on weighted
attribute [2] are proposed to decrease the size of test suite. With the given test suites,
test cases should be prioritized to increase the effectiveness of the testing [3].

However, software cannot be tested exhaustively. The main aim of researches is how
to locate faults as soon as possible. To identify the influential functions in complex soft-
ware network, an approach is proposed for fault localization [4]. Program spectra are
designed to capture the dynamic feature of program. Based on failed execution spectrum,
the decisive factor in computing suspiciousness, suspiciousness metrics Jaccard [5], Taran-
tula [6], Zoltar [7] and Ochiai [8] are proposed. When the fault is covered by no failed
executions, these metrics will be ineffective, especially for the small test suite. In view
of this, other spectra are also considered for designing metrics, such as metrics Euclid
[8], Simple Matching, Sokal and Hamann [9]. A learning-based approach is proposed to
combine multiple metrics for fault localization [10]. However, with the assumption that
failed execution spectrum and successful non-execution spectrum have the same effect on
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the suspiciousness, the performance is not good in locating some faults, which affects the
stability of these metrics for fault localization.

Therefore, based on failed execution and successful non-execution spectra, two new sus-
piciousness computation metrics F4N1 and F2N2 are proposed with the aim of computing
the effective and stable suspiciousness result and solving the ineffective problem of metrics
based on failed execution spectrum as well. Furthermore, the definition of execution trace
self-information is given, and then weighted suspiciousness metrics F4N1W and F2N2W
are designed based on execution trace self-information accordingly.

The remainder of this paper is organized as follows. Preliminaries are presented in
Section 2. In Section 3, we describe two suspiciousness metrics F4N1 and F2N2, and two
weighted metrics F4N1W and F2N2W based on execution trace self-information. Section
4 gives a suspiciousness metric-based fault localization algorithm. The experiments are
designed on the typical program in Sections 5. Finally, we conclude the work in Section
6.

2. Preliminaries. In this section, some notations and preliminaries are presented. A
program is given which contains one fault (error or bug), and the program is divided
into blocks {B1, B2, · · · , BN}. A block can be a single statement or a compound one. To
locate the fault, a test suite {T1, T2, · · · , TM} should be executed. Then the execution
block spectra {eij} and the corresponding result {ri} are collected, where 1 ≤ i ≤ M
and 1 ≤ j ≤ N . If Bj is covered by the execution of Ti, eij = 1; otherwise eij = 0. If
the output for a given test case is different from the expected output, a failed execution
occurs, ri = 1; otherwise, the result is successful (ri = 0).

With the above information, program spectra ⟨aef, aep, anf, anp⟩ will be computed for
each block, which are the same as the notations in [7]. Failed execution spectrum aef is
the number of failed executions that cover the block, and failed non-execution spectrum
anf denotes the number of failed executions that do not cover the block. Similarly, suc-
cessful execution spectrum aep and successful non-execution spectrum anp are defined.
On the basis of some program spectra, the suspiciousness metrics are designed for fault
localization [9]. And then the fault can be identified through the analysis of program
spectra.

3. Suspiciousness Computation Metrics. To obtain suspiciousness ranking of blocks
to be the fault, two new suspiciousness computation metrics F4N1 and F2N2 are proposed
with aef and anp as the determining factors. To further reflect the importance of each
expression in F4N1 and F2N2, execution trace self-information parameters are defined, and
then two weighted suspiciousness computation metrics F4N1W and F2N2W are presented.

3.1. Suspiciousness computation metrics based on aef and anp F4N1 and F2N2.
Based on both failed execution spectrum and successful non-execution spectrum, different
expressions are designed for suspiciousness computation formula to reflect the importance
of each spectrum, and two new suspiciousness metrics F4N1 and F2N2 are proposed.

A new suspiciousness metric F4N1 is proposed, as shown in Formula (1).

F4N1 = aef +
aef

anf

+
aef

aep

+
aef

aef + aep + anf

+
anp

anp + aep + anf

(1)

where ‘F’ denotes aef -based expression, the subscript ‘4’ is the number of expressions
in the aef -based expression, ‘N’ denotes anp-based expression, and ‘1’ is the number of
expressions in anp-based expression.

Both aef and anp are considered as the decisive factors, and anf and aep as the secondary
factors. Besides aef itself, two simple expressions of aef are introduced to consider the in-
fluence of inversely proportional factors aep and anf respectively. In addition, one complex
expression of aef, whose denominator is the polynomial aef + aep + anf, is introduced to
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reflect the influence of aep and anf on the result together and to reduce the importance
of numerator aef. Unlike that of aef, only one complex expression of anp is taken into
account. The numerator and denominator are respectively anp and the sum of anp, aep

and anf. Thus, four aef -based expressions and one anp-based expression are designed to
balance the influence of aef and anp on the suspiciousness value.

Different from F4N1, a new suspiciousness metric F2N2 is designed wherein, two simple
fractions of aef are excluded and another complex expression of anp is introduced to
decrease the importance of the decisive factors aef and increase the influence of anp.

F2N2 = aef +
anp

anp + aep + anf

+
aef

aef + aep + anf

+
anp

anp + aef + anf

(2)

If aef is nonzero, namely aef is larger than or equal to 1, the sum of expressions of aef

will be larger than 1. And for anp-based expression, the numerator anp is included in the
denominator, so the expression of anp should be less than 1. Therefore, aef -based expres-
sion plays a main role in computing the suspiciousness. Otherwise, aef -based expression
is zero, and only the expression of anp plays a role in the metric and the suspiciousness
still can be computed.

3.2. Weighted suspiciousness metrics F4N1W and F2N2W. To get the information
quantity of each event in execution traces, mainly the event of abnormal behavior of fault,
four execution trace self-information parameters are defined.

Definition 3.1. Using the theory of information, the occurrence probability P
(
BjR

)
of

successful executions covering block Bj is considered together, which can be evaluated
with the execution block spectra. The successful execution trace self-information of Bj

is proposed as hep.

hep = −P
(
BjR

)
log

(
P

(
BjR

))
(3)

And the successful non-execution trace self-information hnp is proposed by using the
non-occurrence probability P

(
BjR

)
of successful executions of Bj. Similarly, with the

occurrence probability P (BjR) of failed execution traces of Bj, the failed execution trace
self-information hef is proposed. And with the non-occurrence probability P

(
BjR

)
of

failed executions of Bj, we get the failed non-execution trace self-information hnf.

Definition 3.2. With execution trace self-information parameters, the weight EFω based
on execution trace self-information is designed to weight the complex expression of aef as
a whole, whose structure form is consistent with that of the complex expression.

EFω =
hef

hef + hep + hnf

(4)

Definition 3.3. The weight NPω based on execution trace self-information is presented
for the complex expression of anp.

NPω =
hnp

hnp + hep + hnf

(5)

Since each execution self-information parameter has the same sign, it is not necessary
to consider the sign factor in EFω wherein, hef is proportional to the weight EFω, and
hep and hnf are inversely proportional to EFω. In addition, since hef is included in the
denominator, EFω will be less than 1. Similarly, the value of NPω will be less than 1.

On the basis of F4N1, two complex expressions of F4N1 are weighted using EFω and
NPω respectively. Therefore, based on execution trace self-information, a weighted sus-
piciousness computation metric F4N1W is designed.

F4N1W = aef +
aef

anf

+
aef

aep

+ EFω · aef

aef + aep + anf

+ NPω · anp

anp + aep + anf

(6)
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Besides the retaining of all expressions in F2N2, the complex expression of aef is weighted
by EFω, and one expression of anp is weighted by NPω. A weighted suspiciousness metric
F2N2W is proposed.

F2N2W = aef +
anp

anp + aep + anf

+ EFω · aef

aef + aep + anf

+ NPω · anp

anp + aef + anf

(7)

Both hef -based expression EFω and hef -based expression NPω are taken into account
for constructing these two metrics, the information quantity can be obtained which is
provided by Bj covered by the failed executions and Bj not covered by the successful
executions, and then more information about the abnormal behavior of faulty block can
be obtained. For hef, hnp, hep and hnf can be used as the unsigned number, their values
exert an influence on the suspiciousness result. A high hef meaning a high EFω and a
high hnp meaning a high NPω are proportional to the suspiciousness result. In addition,
small hep and hnf meaning high EFω and NPω are inverse to the suspiciousness result.

Since both EFω and NPω are less than 1, the influence of two complex expressions
in F4N1 or F2N2 is dynamically adjusted, and the value of F4N1W or F2N2W is mainly
determined by aef -based expression when aef is nonzero. Otherwise, when aef is zero, the
suspiciousness is determined only by anp-based expression.

4. Software Fault Localization Using Suspiciousness Metric. For the fault pro-
gram, a method is described in this section to apply suspiciousness metrics F4N1, F2N2,
F4N1W and F2N2W to obtaining the suspiciousness ranking result of blocks for locating
the fault.

Three phases of work should be conducted for fault localization by using suspiciousness
metric. Firstly, the execution traces and outputs of test cases are collected which run
on correct and fault versions. Secondly, the execution block spectra will be extracted.

Algorithm 1 : Suspiciousness metric-based fault localization algorithm
Input : The correct version V0 and fault versions {Vk}, the test suite {Ti}
Output : Ranked blocks {Bik} for each version
1. For each test case Ti in {Ti}
2. Run the test case on the correct version V0

3. Collect the output
4. End For
5. For each fault version Vk

6. For each test case Ti

7. Run the test case
8. Collect execution trace and output ri

9. End For
10.End For
11.For each fault version Vk

12. Extract execution block spectra {eij} for {Bj}
13.End For
14.For each fault version Vk

15. For each block Bj

16. Get program spectra aef, aep, anf and anp

17. Compute execution trace self-information parameters hef, hep, hnf, hnp

18. Compute the suspiciousness by using suspiciousness metric
19. End For
20. Output the sequence {Bik} by using the suspiciousness result for version Vk

21.End For
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Thirdly, the suspiciousness ranking of blocks is computed using the extracted program
spectra and execution trace self-information.

The concrete steps of the suspiciousness metric-based fault localization algorithm are
described in Algorithm 1. Using the algorithm, a sequence Bi1 , Bi2 , · · · , BiN is output
according to from high to low suspiciousness. When more than one block corresponds
to the same suspiciousness, the middle-line strategy in [6] is used. The examination of
blocks starts from high-ranking ones until the fault is located.

5. Experiment. To compare the effectiveness for fault localization of our metrics F4N1,
F2N2, F4N1W and F2N2W with that of other metrics Tarantula (short as TA), Jaccard
(JACC), Simple Matching (SIMP), Sokal (SOK), and Hamann (HAN), three groups of
experiments are conducted by using the software program “tcas” which has most fault
versions in the Software-artifact Infrastructure Repository (SIR) [9].

5.1. Experimental environment. “tcas” stands for “aircraft collision avoidance sys-
tem”, which has 41 fault versions. All versions adapt for the experiment except the version
where fault lacks code and the one where fault is related to more than one block. It is
hard to collect information about fault of versions of above two types. Since the fault
of the macro definition cannot be executed, the block of calling macro is located for the
version. As a result, 35 fault versions are selected.

The type and size of test suite may affect the performance of suspiciousness metric. To
investigate how well our metrics perform with test suites of different types and sizes, test
suites of three types “bigcov”, “cov” and “bigrand” are used.

An open source software infrastructure WET [11] is referred, the suspiciousness metric-
based fault localization algorithm is realized by Java programming language, and our
experiments are conducted under Fedora Core system environment.

5.2. Experimental results. With test suites of “bigcov”, “cov” and “bigrand”, three
groups of experimental results of the suspiciousness metrics-based fault localization are
discussed.

Test suites of “bigcov” are generated for coverage, whose size is about 80. We randomly
use five “bigcov” suites, the average ranking of the fault of each version is obtained by
using the given metric, and it corresponds to each curve as shown in Figure 1.

aef -based metrics TA and JACC are ineffective for many versions such as 5, 6, 8, 12,
13, 15, 20, because aef has no effect on the suspiciousness without any failed execution.
Although the improvement of SIMP brings out the metric SOK, metrics SIMP and SOK
based on aef and anp almost have the same performance. Though HAN is constructed based
on four spectra, the ranking is not increased obviously. Compared with other metrics, our
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Figure 1. The average ranking of the fault with “bigcov” suites
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metrics have better performance for most versions such as 3, 4, 6, 9, 12, 15, 17, 18. In
comparison with TA, JACC and SIMP, our metric F4N1 gains an average increase of
15%, 14.8% and 11.6% respectively, F4N1W gains an average increase of 15.6%, 15.5%
and 12.3% respectively, F2N2 gains an average increase of 14.3%, 14.1% and 10.9%, and
F2N2W gains an average increase of 15.8%, 15.7% and 12.5%. In addition, with weights
based on execution trace self-information, F4N1W performs better than F4N1 for versions
4, 15, 25, 30, 36, 39, 41, and F2N2W performs better than F2N2 for versions 3, 5, 7, 9, 17,
18, 19, 20, 21, 22 and so on.

Five “cov” suites are utilized, which are generated to achieve branch coverage, and the
size is reduced to about 7%∼10% of the “bigcov” suite. The average ranking of the fault
is shown as Figure 2.

Figure 2. The average ranking of the fault with “cov” suites

Since less or none of failed test cases are included in these suites, aef is zero for most
versions. It is obvious that depending on the type of test suite, TA and JACC turn into
the worst case, which is shown in Figure 3. Other metrics have relatively close ranking,
which are all better than TA and JACC. Our four metrics are superior to metrics SIMP,
SOK and HAN for versions 1, 2, 12, 13, 14, 16 and so on. By means of weights based
on the execution trace self-information, F4N1W performs better than F4N1 for versions
4, 15, 25, 36, 39, 41.

Tests are selected randomly to generate “bigrand” suites, which have the same size as
“bigcov” suites. The average ranking result of the fault is described as Figure 3, which is
obtained based on five “bigrand” suites.
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With an even big suite, aef -based metrics JACC and TA cannot compute suspiciousness
for versions 4, 5, 6, 8, 9, 13, 15, etc., and the ranking becomes unstable. The ranking of
SIMP, SOK and HAN is between that of aef -based metrics and our metrics. By contrast,
F4N1, F2N2, F4N1W and F2N2W have a higher ranking for most versions. Furthermore,
F4N1W displays better performance than F4N1 for versions 4, 6, 15, 22, 25, 36, 39, 41. In
a similar way, F2N2W performs better than F2N2 for versions 9, 12, 34, 38.

To sum up, the results show that F4N1, F2N2, F4N1W and F2N2W (especially F4N1W
and F2N2W) have a stable and effective suspiciousness ranking for fault with test suites
of different sizes and types, that they are capable in the circumstances of fewer test cases,
that it is possible for them to locate fault as soon as possible, and that what is more
important is the solution of ineffectiveness problem of aef -based metrics.

6. Conclusions. We propose two new suspiciousness metrics F4N1 and F2N2 for fault
localization based on aef and anp. We put forward the concept of execution trace self-
information, and then design two weighted suspiciousness metrics F4N1W and F2N2W
respectively on the basis of F4N1 and F2N2. Then we design the suspiciousness metric-
based fault localization algorithm to illustrate the application of our suspiciousness metrics
in locating fault. The experiment results show that the ineffectiveness problem of aef -
based metrics can be solved, and our metrics F4N1, F2N2, F4N1W and F2N2W (especially
F4N1W and F2N2W) generally have a higher suspiciousness ranking of fault with test
suites of different types and sizes. As a result, fewer blocks need to be examined for fault
localization in software system and the effectiveness of fault localization can be improved.

The performance of suspiciousness metric-based fault localization method should be
improved for cases of complex fault in the program, such as the fault of missing multiple
lines of code. To effectively locate complex faults, it is necessary to consider the informa-
tion of execution time of each statement for each test case, and then the suspiciousness
metric-based fault localization method will be extended in the future work.
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