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Abstract. The exchanged hypercube is one of new interconnection network topologies
in recent years. It reduces the cost of topology connecting by removing some links. Based
on it, a new fault tolerant interconnection network called extended exchanged hypercube
(EEH) is proposed. We show that EEH maintains the appealing properties of the ex-
changed hypercube and prove that it provides many additional advantages as average
distance, reduced diameter, and constant degree of nodes at the same time. Furthermore,
the optimal message routing algorithm is proposed, and it is easy and simple to imple-
ment.
Keywords: Interconnection network, Message routing, Extended exchanged hypercube,
Diameter

1. Introduction. In these past few years, the large-scale parallel computing systems
have got more and more attention and increased efforts. The interconnection networks
play an important role in this area [1,2]. It is widely known that most of the perfor-
mances of the interconnection networks are determined by the topology. Hypercube has
received much considerable attention because of its attractive features [3]. Variations of
this basic topology have been proposed in the literature to overcome the shortcomings and
further enhance some features, such as Möbius cubes [4], crossed cube [5], twisted cube
[6], exchanged hypercube [7], locally twisted cube [8], fractal cubic network [9]. Especially
the exchanged hypercube (EH) highly reduces interconnection complexity and solves the
problem of hardware cost by removing some edges from hypercube. Thus some related
works on EH have been investigated such as domination number [10], connectivity [11],
super connectivity [12], fault-tolerance measurement [13] and diagnosabilities [14]. How-
ever, the processor nodes in EH are involved in communicating messages between their
neighbors. As we know, an efficient communication scheme is one in which the processor
nodes perform more of computation tasks and less of communication tasks. In addition,
computing systems should have a good scalability; there should be no changes in the basic
node configuration as we increase the number of nodes.

The demand for increasing the efficiency of EH and achieving the truly expandable
ability motivates our investigation in proposing a new interconnection network. Inspired
by the cube-type networks such as Extended Hypercube [15,16] and Hierarchical Crossed
Cube [17], we propose a new hierarchical fault-tolerant interconnection network called
Extended Exchanged Hypercube, denoted by EEH.

The proposed interconnection network combines some of the topological features of the
architectures proposed in [15,17-19] and at the same time retains the attractive features
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of EH topology to a large extent. EEH is a hierarchical, expansive and recursive with
a constant predefined building block, without changing the hardware configuration of all
the nodes whenever the number of nodes grows exponentially.

This paper is organized as follows. The second section presents construction and ad-
dressing of EEH. Its various topological properties are discussed in the third section. And
then, message routing issue is discussed in Section 4. Finally, we conclude the paper in
Section 5.

2. The Extended Exchanged Hypercube. In this part, a formal introduction to the
EEH architecture is given and a methodology for addressing the nodes of the EEH is also
discussed. The EEH architecture is suited for hierarchical expansion of multiprocessor
systems.

The k-dimensional EEH having levels of hierarchy defined as EEH(k, l) (l is the degree
of the EEH) is a labeled graph which can be defined recursively with two special types of
vertices called Network Controller (NC) and Processing Element (PE). The PE performs
computational task whereas NC is responsible for communication task.

As shown in Figure 1, NC is at the top, which is at the highest level and PE’s are at
the zero level. The basic module EEH(k, 1) that consists of a k-Dimensional EH and one
NC, has two levels of hierarchy: the NC at the first level and the EH at the zero level. In
addition, there is an EH of 2k NC’s at the (l − 1)th level and one NC at the lth level in
an EEH(k, l). Again it can be seen that 2k NC’s form an EH at the (l − 1)th level. The
EH consisting of the PE’s is referred to as the EEH(k, 0). An EEH(k, 2) has 2k EH of
PE’s at the 0th level, one EH of NC’s at the first level, and one NC at the second level.
In general any EEH(k, l) can be recursively built from the basic module EEH(k, 1).

Figure 1. Basic module of EEH, e.g., EEH(3, 1)

For example, the NC’s of each EEH(k, 2) can be built from EEH(k, 1) and this procedure
can be repeated hierarchically to build the required size of EEH. The basic module of the
EEH is a constant predefined building block and the node remains the same configuration
regardless of the dimension of the EEH. As shown in Figure 1, the PE’s of the basic
module or EEH(k, 1) can be addressed as 0, 1, . . ., M (M = 2k − 1). Now if the NC of
EEH(k, 1) is identified by N , then the PE’s of this EEH(k, 1) are addressed as N0, N1,
N2, . . ., NM . The address of the NC precedes the address of the PE. In general, the
address for an arbitrary node at the 0th level can be written as DlDl−1Dl−2Dl−3 . . . D0,
each Di (0 ≤ i ≤ l) is a k-bit mod 2k number. Here D0 corresponds to the address of a
node in EEH(k, 0), D1 corresponds to the address of the node (NC) at the first level (to
which the first node is connected), D2 corresponds to the address of the node (NC) at
the second level, and so on. Consider an EEH of degree “l”, a node at the 0th level will
have a (l + 1) digit address, a node at the first level will have l digit address, a node at
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the second level will have a (l − 1) digit address, etc. The solitary node at the lth level
has one digit address, that is 0.

The NC’s at the (l − 1)th level of EEH(k, 1) are addressed by 0. The EH at the lth
level consisting of 2k NC’s have ids as 00, 01, . . . , 0M (M = 2k − 1). The id of the NC
precedes the node id of PE’s. Thus the PE’s connected to the NC’s 0i (0 ≤ i ≤ m) have
addresses 0i0, 0i1, . . . , 0iM .

In an EEH, the NC’s are used as communication processor for global communication
for level to level communication and also for local communication between two different
basic modules. However, the NC’s are not used for the communication between two nodes
of the same basic module. There are (k + 1) parallel paths between any two nodes of the
EEH(k, l), k-path contributed by the k-edges of EH and one path due to the NC.

3. Topological Properties of EEH.

3.1. Degree. Degree of a node or connectivity of a node determines the hardware com-
plexity of the network. The higher the connectivity, the higher is the hardware complexity
and the cost of the network. A constant connectivity implies extendibility without change
in the hardware structure of each node.

In an EEH(k, l) the PE’s are at the 0th level of hierarchy. Each PE’s belonging to
EEH(k, 1) is directly connected to k neighboring PE’s of the same EH and to an NC at
the next higher level. Thus the degree of PE in EEH(k, l) is (k + 1). However, for an
NC, where NC is connected to 2k PE’s at its just lower level, k NC’s at its level and one
NC at its next higher level. Therefore the degree of an NC other than the highest NC is
(2k + k + 1). As an NC at highest level is connected to 2k NC’s at its just lower level, the
degree connectivity of the NC at highest level is 2k.

3.2. Diameter.

Theorem 3.1. The diameter of EEH(k, l) denoted by D(G) is k + 2l − 1.

Proof: Considering two nodes N1 and N2, they are either in the same EH or in different
EHs.
Case 1. Suppose N1 and N2 are in the same k-EH. Then the distance between N1 and N2

is at most k + 1.
Case 2. Suppose N1 and N2 are in different EHs. Let us choose a node N0 in the EH that
contains N1. By previous case the distance between N1 and N0 is at most k + 1. N2 and
N0 can be connected by links through NC’s at 1, 2, 3, . . ., (l−1) levels. Thus the shortest
path between N2 and N0 has a distance 2(l − 1). Hence the distance between N1 and N2

is at most k + 1 + 2(l − 1) = k + 2l − 1. So the diameter of EEH(k, l) is k + 2l − 1.

3.3. Node.

Theorem 3.2. The total number of nodes in EEH(k, l) is given by p = 2kl+(2kl−1)/(2k−
1).

Proof: There are 2l number of EH of PE’s. Thus in the EEH(k, l), the total number
of PE’s denoted by N is 2k ∗ 2l = 2kl. For 0 < j ≤ l, the number of NC’s at level j is

(2k)l−j; thus, the total number of NC’s denoted by M =
l∑

j=1

(2k)l−j = (2kl − 1)/(2k − 1),

so the total number of nodes in EEH(k, l) is given by p = 2kl + (2kl − 1)/(2k − 1).

3.4. Cost of the network.

Theorem 3.3. The cost of EEH(k, l) is given by

C = (k + 2l − 1) ∗
(
(k + 1) ∗ 2kl +

(
2k + k + 1

) (
2kl − 1

) / (
2k − 1

)) /(
2kl

+
(
2k + k + 1

) (
2kl − 1

) )
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Proof: Cost of a network is given by the product of node degree and diameter. In an
EEH(k, l), the degrees of PE and the NC are different. The average degree of node is

Davg =
(
(k + 1) ∗ 2kl +

(
2k + k + 1

) (
2kl − 1

)
/
(
2k − 1

)) / (
2kl +

(
2k + k + 1

) (
2kl − 1

))
and the diameter is k + 2l − 1. Hence the cost is given by

C = (k + 2l − 1) ∗
(
(k + 1) ∗ 2kl +

(
2k + k + 1

) (
2kl − 1

)
/
(
2k − 1

)) /(
2kl

+
(
2k + k + 1

) (
2kl − 1

) )
3.5. Global average distance. The global average distance conveys the actual perfor-
mance of the network. The summation of distances of all nodes from a given node over
the total number of nodes gives the average distance of the network.

Theorem 3.4. The global average distance of EEH(k, l) is given by d =
∑

EEH(k,l)

dNd/(N + M) where N = 2kl and M = (2kl − 1)/(2k − 1) and Nd is the number of
processors at a distance d from the source node.

N is the total number of PE’s and M is the total number of NC’s. The global average
distance is dependent on the degree of EEH(k, l) and increases with it.

3.6. Links and message traffic density. The total number of links in an EEH(k, l) is
given by

E = 2k ∗ (k/2 + 1) ∗ 2k(l−1)[(1 − 2−kl)/(1 − 2−k)]

The message traffic density in EEH(k, l) is given by ρ = (Average message distance ∗
Number of nodes)/(Number of links) = d(N + M)/E, where E is the total number of
links. Assuming each node is sending one message to a node at distance d on the average
and considering the availability of n links to accommodate such a traffic, ρ can be a good
measure to estimate the message traffic in the network. (N + M) is the total number of
nodes consisting of PE’s and NC’s.

3.7. Extensibility and fault tolerance. Extensibility is the property which facilitates
constructing large-sized systems out of small-sized systems with minimum changes in the
configuration of the nodes of the system. The EEH(k, l) is hierarchical in nature and can
be built by extension of the number of levels without affecting the basic structure. The
most important advantage of this property is that the degree of a node remains the same,
independent of the total number of nodes and hence allows for further expansion. Thus
the architecture of EEH(k, l) is well suited for hierarchical expansion of multiprocessor
system.

Fault tolerance of a network is an important characteristic in parallel computing en-
vironment. For a graph, it is defined as the maximum number of vertices that can be
removed from it provided that the graph is still connected. Hence the fault tolerance of a
graph is defined to be one less than its connectivity. As discussed in [20], a system is said
to be k-fault tolerant if it can sustain up to k number of edge faults without disturbing
the network. For symmetric interconnection networks the connectivity is equal to the
node degree. For the EEH(k, l) which is a hierarchical network of EH with all processing
elements at the lowest level and all communication processors at the highest level the
node degree is (k + 1). So EEH(k, l) can tolerate up to k faults.

3.8. Performance evaluation. We compare the proposed EEH(k, l) with Hypercube
(HQn), Extended Hypercube (EH(k, l)) and Exchanged Hypercube (EH(s, t), s+t+1 = n)
for the same dimension. Seeing Table 1 the comparison is based on the following param-
eters: number of links, network diameter, node degree, cost factor, expandability and
decomposition, which have significant impact on the performance of a parallel computing
system. To facilitate comparisons, asymptotic values are used where necessary.
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Table 1. Comparison of various networks (n = s + t + 1, n = k ∗ l)

Network HQn EH(k, l) EH(s, t) EEH(k, l)

Links n2n−1 → (k + 2)2n−1 (n + 1)2n−2 → (k/2 + 1)2kl

Diameter n k + 2(l − 1) n + 1 k + 2l − 1

Node Degree n → k + 2 s + 1 or t + 1 2k + k + 1

Cost n2 → k2 + 2n → n2/2 → k2 + 2l

Expandability Sub-optimal Optimal Sub-optimal Optimal

Decomposition Complex Simple Complex Simple

4. Message Routing in EEH. An optimal routing algorithm is to find a shortest path
between two communicating nodes. Using the NC, the inter-processor message traffic
of a module gets redistributed into two categories, that is, local communication and
global communication [15]. Communication among the PE’s belonging to the same EH
is classified as local communication. Communication between the PE’s of different basic
modules via the network controller is called global communication.

For local communication the message is routed within the same EH without going to the
NC and this can be done by employing EH message passing algorithms. The algorithm
always finds a shortest path between source and destination nodes in O(n) time. The
NC’s are involved in global communication. The highest NC transmits the message from
source to destination PE’s via the network of NC’s. The message passing operation in
the global communication involves 1) the source PE, 2) up to 2(l − 1) NC’s and 3) the
destination PE. The transfer of message between two nodes at different levels of hierarchy
is referred to as the vertical shift [15]. Routing in EEH (k, l) involves two vertical shifts
for level to level communication and a cube shift for movement in EH. The algorithm
first checks whether it is a local communication or a global one. The message routing for
different source and destination pairs has been given in Table 2 for illustration.

Following procedure describes the message routing procedure. Let x be the source node
with node id Ds

l D
s
l−1D

s
l−2 . . . Ds

0, and y be the destination node with node id Dd
l D

d
l−1

Dd
l−2 . . . Dd

0.
The procedure for routing a message from the host system to a PE involves a vertical

shift from Ds
l to Dd

l D
d
l−1D

d
l−2 . . . Dd

0 via Dd
l D

d
l−1, Dd

l D
d
l−1D

d
l−2, Dd

l D
d
l−1D

d
l−2 . . . Dd

1, where
Ds

l = Dd
l (as illustrated in Table 2 for routing).

Algorithm: msgrouting (x, y)
Begin

If [Ds
l D

s
l−1D

s
l−2 . . . Ds

0] = [Dd
l D

d
l−1D

d
l−2 . . . Dd

0]
Then destination is source; terminate.

Else set j = 0;
While j = 0 do
for i = 1 to l
Begin
If Ds

l−i = Dd
l−i then j = i;

End
Begin

Vertical shift from Ds
l D

s
l−1D

s
l−2 . . . Ds

0 to Ds
l D

s
l−1D

s
l−2 . . . Ds

j ;

Cube shift from Ds
l D

s
l−1D

s
l−2 . . . Ds

j to Dd
l D

d
l−1D

d
l−2 . . . Dd

j ;

Vertical shift from Dd
l D

d
l−1D

d
l−2 . . . Dd

j to Dd
l D

d
l−1D

d
l−2 . . . Dd

0;
End

End
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Table 2. Message routing sequence

Distance Destination Routing Sequence From 043
1 041 043-041
2 040 043-041-040
3 060 043-04-06-060
4 021 043-04-0-02-021

5. Conclusions. We have presented a new kind of interconnection network: the Ex-
tended Exchanged Hypercube EEH(k, l). Compared to its parent topologies exchanged
hypercube, EEH(k, l) not only holds many desirable properties such as low diameter and
node degree, but also has more scalability than EH. The use of network controller nodes
ensures efficient communication of messages via the interconnections among the network
controllers. We showed that the proposed network performs well in terms of fault tol-
erance, cost factor. Furthermore, the various topological properties of the EEH(k, l) are
analyzed and evaluated, an optimal message routing algorithm is developed. Extensive
comparisons of EEH(k, l) with other hypercubes are included, which proves that EEH(k, l)
is applicable to large-scale parallel computing system very well. However, there are many
interesting problems such as wide-diameter, fault-diameter, connectivity and its graph
embedding capability. We aim to investigate those problems in our future work.

Acknowledgment. This work is supported by Natural Science Foundation of China
(Grant No. 61363002 and No. 61462006). The authors would like to thank the reviewers
and the editors for their helpful comments and suggestions, which have improved the
quality of this paper.

REFERENCES

[1] T. Feng, A survey of interconnection networks, IEEE Computers, no.1, pp.12-27, 1981.
[2] L. N. Bhuyan and D. P. Agrawal, Performance of multiprocessor interconnection network, IEEE

Computers, no.22, pp.25-37, 1989.
[3] Y. Saad and M. H. Schultz, Topological properties of hypercube, IEEE Trans. Computers, no.37,

pp.867-872, 1988.
[4] S. M. Larson and P. Cull, The Möbius cubes, IEEE Trans. Computers, no.44, pp.647-659, 1995.
[5] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel and Distributed

Systems, no.3, pp.513-524, 1992.
[6] P. A. J. Hilbers, M. R. J. Koopman and J. L. A. van de Snepscheut, The twisted cube, Parallel

Architectures and Languages Europe, Springer Berlin Heidelberg, 1987.
[7] P. K. K. Loh, J. H. Wen and P. Yi, The exchanged hypercube, IEEE Trans. Parallel and Distributed

Systems, no.16, pp.866-874, 2005.
[8] X. F. Yang, D. J. Evans and G. M. Megson, The locally twisted cubes, International Journal of

Computer Mathematics, no.82, pp.401-413, 2005.
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