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Abstract. In this paper, we consider a discrete time Geom/Geom/1 queue system with
(N, n)-preemptive priority discipline and multiple synchronization working vacation. A
discrete time three-dimension Markov chain (MC) of this queue system is given. By
using the quasi birth and death chain and matrix-geometric solution theory, the average
queue length of the two classes and the probability of a customer I being preempted are
obtained. In the end, some numerical and optimization results are provided to illustrate
the effect of the parameters on several performance characteristics.
Keywords: Preemptive priority, Threshold, Quasi birth and death chain, Matrix-
geometric solution, Optimization

1. Introduction. There are two fundamental priority disciplines in queueing system,
non-preemptive (NP) and preemptive disciplines. The NP and preemptive disciplines are
both extreme cases when a high-priority customer arrives during the provision of service
to a low-priority customer. For instance, Guo and Liu researched a multi-class single-
server queue model, which has a preemptive priority service discipline and K customer
classes in [1]. Peköz analyzed a multi-server non-preemptive queue, and there was a
decision maker, who decided when waiting customers could enter service in [2]. In order
to balance this situation, many scholars had done a lot of trying. Kim first introduced
the (N, n)-preemptive priority discipline in [3]; the preemption of the service of a low-
class customer is determined by two thresholds N and n of the queue length of high-class
customers. And the qualities for two types of customers can be controlled within a certain
bound. This paper expands the strategy to a discrete time Geom/Geom/1 queue system.

When the server is idle, it may cause waste of resources to a certain extent, many re-
searchers have done a lot to conserve the system resource. Servi and Finn first introduced
working vacation policy in [4], in which the server worked with a lower service rate rather
than stopping the service completely during a vacation period. Many scholars changed
the arriving or serving distribution and added many other policies on this working va-
cation queue model, and improved the server utility in [5, 6, 7, 8]. In general, most of
the articles are based on the two-dimension Markov process or two-dimension MC, con-
sidered the length of the customer and the state of the system. Our main work is to
study a three-dimension MC composed by the average length of the two classes customers
and the state of the server and combine (N, n)-preemptive priority discipline and working
vacation policy on the basis of the Geom/Geom/1 queue model. And this research makes
the theory closer to the reality.

The paper is organized as follows. In Section 2, the mathematical model of this queue
system is given. In Section 3, the transition probability matrix and the existence condition
of the steady-state distribution are analyzed. In Section 4, some performance measures
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are considered. In Section 5, some numerical examples and optimization results are shown.
In Section 6, conclusions are given.

2. Mathematical Model. In this model, customers are assumed to arrive in a queue
system with a single server, where there is infinite buffer space for customer I and limited
buffer space with the fixed number K for customer II. Both of the inter-arrival time, the
service time and the vacation time are assumed to be mutually independent sequence.
The queue model is referred as the late arrival system with delayed access based on
the Entrance Protocols. In this model, let x̄ be 1 − x, for ∀x ∈ [0, 1], and the specific
description for this model is as follows.

(1) Suppose that a potential customer arrival occurs in the interval (t−, t), t = 0, 1, . . ..
The probability of a customer arrival occurring in a slot is λ (0 ≤ λ ≤ 1), the arriving
customer is customer II with probability α (0 ≤ α ≤ 1), the arriving customer is customer
I with probability ᾱ. The inter-arrival time T1 and T2 of customer I and customer II follow
geometric distributions with parameters λᾱ and λα as follows

P{T1 = j} = λᾱ(1 − λᾱ)j−1, P{T2 = j} = λα(1 − λα)j−1, j = 1, 2, . . .

(2) The potential service occurs in the interval (t, t+). The service time S1, S2 follow
geometric distributions with parameters µ1 and µ2 (0 < µ1, µ2 < 1) as follows

P{S1 = j} = µ1µ̄
j−1
1 , P{S2 = j} = µ2µ̄

j−1
2 , j = 1, 2, . . .

(3) When the system is empty, the server would be in a working vacation period. If
there is no customer when the working vacation period ends, the server will enter into the
next working vacation period, otherwise, the vacation period is over and the new busy
period is coming. The vacation time V follows geometric distribution with parameter θ
(0 < θ < 1), the working vacation service time S1v, S2v follow geometric distributions
with parameters µ1v and µ2v (0 < µ1v, µ2v < 1) as follows

P (V = j) = θθ̄j−1, P{S1v = j} = µ1vµ̄
j−1
1v , P{S2v = j} = µ2vµ̄

j−1
2v , j = 1, 2, . . .

(4) In this system, when the server is serving for customer I, if the number of customer
II (including the new customer II) in the system reaches the upper threshold N (N ≥ 1),
the service for the customer I will be preempted, and this preempted service will be
restarted as soon as the number of customer II in the system decreases to a certain lower
threshold n (0 ≤ n ≤ N − 1). If the number of customer II in the system does not reach
the upper threshold N , the customer II will not be served until the number of customer
II in the system reaches the upper threshold N or the customer I has completely been
served. We assumed that the service order is First-Come First-Served (FCFS) discipline.

3. Analysis of the State Transition. Let L1(t
+), L2(t

+) represent the number of cus-
tomer I and II in the system at time t+, and

Jt =

{
0, the instant of t+ is in working vacation period,

1, the instant of t+ is in busy period.

Then we can obtain that {(L1(t
+), L2(t

+), Jt), t ≥ 1} is a discrete time three-dimension
MC in this queue system and its state space is as follows

Ω = {(0, 0, 0)} ∪ {(0, l, j), 1 ≤ l ≤ K, j = 0, 1} ∪ {(i, l, j), i ≥ 1, 0 ≤ l ≤ K, j = 0, 1}.

All possible states: (i, 0, 0), (i, 0, 1), (i, 1, 1), . . ., (i,K, 0), (i,K, 1) are called level i,
where i ≥ 1. Specifically, level 0 has states: (0, 0, 0), (0, 1, 0), (0, 1, 1), . . ., (0, K, 0),
(0, K, 1).
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The transition probability matrix can be written as follows

P =


A00 A01

A10 A1 A2

A0 A1 A2

. . . . . . . . .

 (1)

where A00, A01, A10, A0, A1, A2 represent state transition probability between levels.
We define symbols δ1, δ1v, δ2, δ2v, δ3, δ3v, δ4, δ4v, as follows

δ1 = λ̄µ̄2 + λαµ2, δ1v = λ̄µ̄2v + λαµ2v, δ2 = µ̄2 − λᾱµ̄2 + λαµ2,
δ2v = µ̄2v − λᾱµ̄2v + λαµ2v, δ3 = λ̄µ̄1 + µ1λᾱ, δ3v = λ̄µ̄1v + µ1vλᾱ,
δ4 = λ̄(1 − µ1 − µ2) + λαµ2 + λᾱµ1, δ4v = λ̄(1 − µ1v − µ2v) + λαµ2v + λᾱµ1v.

The details are as follows

A00 =



λ̄ λαθ̄ λαθ

λ̄µ2v δ1vθ̄ δ1vθ λαµ̄2vθ̄ λαµ̄2vθ

λ̄µ2 0 δ1 0 λαµ̄2

λ̄µ2vθ̄ λ̄µ2vθ δ1vθ̄ δ1vθ λαµ̄2vθ̄ λαµ̄2vθ

0 λ̄µ2 0 δ1 0 λαµ̄2

. . . . . . . . .

... 0 δ1 0 λαµ̄2

λ̄µ2vθ̄ λ̄µ2vθ δ2vθ̄ δ2vθ

0 λ̄µ2 0 δ2


,

A10 =



λ̄µ1v λαµ1vθ̄ λαµ1vθ

λ̄µ1 0 λαµ1

λ̄µ1vθ̄ λ̄µ1vθ λαµ1vθ̄ λαµ1vθ

0 λ̄µ1 0 λαµ1

. . . . . . . . . . . .

λ̄µ1vθ̄ λ̄µ1vθ λαµ1vθ̄ λαµ1vθ

0 λ̄µ1 0 λαµ1

0 0 0 0
. . . . . . . . . . . .

0 0 0 0



,

A0 =



λ̄µ1vθ̄ λ̄µ1vθ λαµ1vθ̄ λαµ1vθ

0 λ̄µ1 0 λαµ1

. . . . . . . . . . . .

λ̄µ1vθ̄ λ̄µ1vθ λαµ1vθ̄ λαµ1vθ

0 λ̄µ1 0 λαµ1

0 0 0 0

. . . . . . . . . . . .

0 0 0 0


,
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A1 =



δ3v θ̄ δ3vθ λαµ̄1v θ̄ λαµ̄1vθ
0 δ3 0 λαµ̄1

δ3v θ̄ δ3vθ λαµ̄1v θ̄ λαµ̄1vθ
0 δ3 0 λαµ̄1
. . .

. . .
. . .

. . .
δ3v θ̄ δ3v θ̄ λαµ̄1v θ̄ λαµ̄1vθ
0 δ3 0 λαµ̄1

λ̄µ2v θ̄ λ̄µ2vθ δ4v θ̄ δ4vθ λαµ̄v θ̄ λαµ̄vθ
0 λ̄µ2 0 δ4 0 λαµ̄

. . .
. . .

. . .
. . .

. . .
. . .

λ̄µ2v θ̄ λ̄µ2vθ δ4v θ̄ δ4vθ λαµ̄v θ̄ λαµ̄vθ
0 λ̄µ2 0 δ4 0 λαµ̄

λ̄µ2v θ̄ λ̄µ2vθ δ1v θ̄ δ1vθ λαµ̄2v θ̄ λαµ̄2vθ
0 λ̄µ2 0 δ1 0 λαµ̄2

. . .
. . .

. . .
. . .

. . .
. . .

0 λ̄µ2 0 δ1 0 λαµ̄2

λ̄µ2v θ̄ λ̄µ2vθ δ2v θ̄ δ2vθ
0 λ̄µ2 0 δ2



,

A2=



λᾱµ̄1vθ̄ λᾱµ̄1vθ
0 λᾱµ̄1. . . . . .

λᾱµ̄1vθ̄ λᾱµ̄1vθ
0 λᾱµ̄1

λᾱµ2vθ̄ λᾱµ2vθ λᾱµ̄vθ̄ λᾱµ̄vθ
0 λᾱµ2 0 λᾱµ̄
. . . . . . . . . . . .

λᾱµ2vθ̄ λᾱµ2vθ λᾱµ̄vθ̄ λᾱµ̄vθ
0 λᾱµ2 0 λᾱµ̄

λᾱµ2vθ̄ λᾱµ2vθ λᾱµ̄2vθ̄ λᾱµ̄2vθ
0 λᾱµ2 0 λᾱµ̄2. . . . . . . . . . . .

λᾱµ2vθ̄ λᾱµ2vθ λᾱµ̄2vθ̄ λᾱµ̄2vθ
0 λᾱµ2 0 λᾱµ̄2



.

According to the block structure of transition probability matrix, we can obtain that
{(L1(t

+), L2(t
+), Jt), t ≥ 1} is a quasi birth and death chain. When the MC is positive

recurrent, the steady-state distribution is indicated as

πi,l,j = lim
t→∞

P{L1(t
+) = i, L2(t

+) = l, Jt = j}, (i, l, j) ∈ Ω, Π = (π0,π1,π2, . . .)

where

π0 = (π0,0,0, π0,1,0, π0,1,1, . . . , π0,K,0, π0,K,1),

πi = (πi,0,0, πi,0,1, πi,1,0, πi,1,1, . . . , πi,K,0, πi,K,1), i ≥ 1.

The necessary and sufficient conditions that {(L1(t
+), L2(t

+), Jt), t ≥ 1} is positive
recurrent are the matrix quadratic equation R2A0 + RA1 + A2 = R has a minimal non-
negative solution R and the spectral radius SP(R) < 1, and the (4K + 3) dimensional
matrix

B[R] =

[
A00 A01

A10 RA0 + A1

]
(2)

has left-invariant vector. When MC is positive recurrent, its stationary distribution is
(π0,π1)B[R] = (π0, π1),

π0e + π1(I − R)−1e = 1,

πi = π1R
i−1, i ≥ 1

(3)
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where e is an appropriate dimensional column vector with all element being equal to one.
The proof of Equation (3) can be obtained by using equilibrium equation ΠP = Π and
matrix-geometric solution method presented in [9].

4. Performance Measures. According to the results from Section 3, we can obtain the
average queue length of customer I and customer II, the probability of a customer I being
preempted and so on.

(1) The average queue length of customer I is given by

E[L1] =
∞∑
i=0

iP (L1 = i) =
∞∑
i=1

iπie =
∞∑
i=1

i
K∑

l=0

1∑
j=0

πi,l,j.

(2) The average queue length of customer II is given by

E[L2] =
K∑

l=0

lP (L2 = l) =
K∑

l=1

l

∞∑
i=0

1∑
j=0

πi,l,j.

(3) The probability that a customer I is preempted by customer II is given by

P1 =
1∑

j=0

∞∑
i=0

πi,N,j.

(4) The probability that the server is released from customer II is given by

P2 =
1∑

j=0

∞∑
i=1

πi,n,j.

5. Numerical and Optimization Results. Firstly, we provide some numerical results
to describe the effect of parameters on performance measures. Take α = 0.4, µ1 = 0.3,
µ2 = 0.6, µ1v = 0.05, µ2v = 0.1, θ = 0.3, K = 8.

In Figure 1, taking n = 3, we can find that E[L1] increases with the increase of λ.
When λ is unchanged, E[L1] decreases with the increase of the value N . That is mainly
because N increases, customer II has less chances to preempt the service from customer
I, therefore, customer I has more chances to get service, and the number of customer I
decreases. In Figure 2, taking n = 3, we can find that P1 increases with the increase of
λ. When λ is unchanged, P1 increases with the increase of the value n. That is mainly
because with the increase of n, the frequency of server transformation between two types
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Table 1. The relation of P2 with µ2 and N

N
The probability P2

µ2 = 0.4 µ2 = 0.45 µ2 = 0.5 µ2 = 0.55 µ2 = 0.6
5 0.4941 0.4995 0.5055 0.5111 0.5144
6 0.4669 0.4725 0.4744 0.4748 0.4745
7 0.4581 0.4663 0.4703 0.4720 0.4728

of customers increases; hence, the probability of customer I being preempted increases.
With the increase of n, the effect of λ for P1 is more obvious.

In Table 1, taking n = 3, P2 increases with the increase of µ2. When µ2 is unchanged,
P2 decreases with the increase of N . It is mainly because the increase of N makes more
customer II get service and have less chances to release server. Therefore, the probability
of the server being released from customer II decreases.

Then, we discuss the individual optimality for each customer. We assumed that R1, R2

represent the reward which per customer I and customer II could obtain when they got
service; C1, C2 represent the cost which the customer can produce per waiting time in
the system. UI1, UI2 represent the individual benefit of customer I and customer II. The
individual benefit UIi is given as follows

UIi = (µi/λi)Ri − wiCi, i = 1, 2

where λ1 = λᾱ, λ2 = λα, wi = E(Li)/λi.
Finally, we discuss the social optimality of the system. And we assume that R0 repre-

sents the average reward when the customer had been served; C represents the average
cost which customers can produce per waiting time; Cp represents the cost when a cus-
tomer I had been preempted. The social benefit Us of the system is given as follows

Us = λs[(µs/λs)R0 − wsC] − P1Cp

where R0 = (R1 + R2)/2, C = (C1 + C2)/2, ws = (w1 + w2)/2, µs = (µ1 + µ2)/2.
This social optimality arrival rate λ∗

s with the maximum social welfare U∗
s can be

denoted as follows

λ∗
s = arg max

0<λs<1
{λs[(µs/λs)R0 − wsC] − P1Cp} .

In Figure 3, taking N = 6, R1 = 15, C1 = 1.2, when n is unchanged, UI1 increases with
the increase of λ firstly, then with the increase of λ, UI1 decreases. When λ is unchanged,
with the increase of n, UI1 decreases. And obviously, in the same condition, the bigger
of the value µ2 is, the more benefit we can get. We also can find that when n = 2,
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µ2 = 0.6, the value of λ = 0.36 can make the individual benefit UI1 reach maximum.
When n = 4, µ2 = 0.5, the value of λ = 0.35 can make the individual benefit UI1 reach
maximum. When n = 4, µ2 = 0.6, the value of λ = 0.34 can make the individual benefit
UI1 reach maximum. In Figure 4, taking N = 8, when n is unchanged, Us increases
with the increase of λ firstly, then with the increase of λ, the social benefit decreases.
When λ is unchanged, with the increase of n, the social benefit decreases. This is mainly
because with the increase of n, the frequency of server transformation between two types
of customers increases; hence, the cost will increase and the benefit will decrease. We also
can find that when n = 2, µ2 = 0.6, the value of λ = 0.44 is the best parameter, when
n = 4, µ2 = 0.6, the value of λ = 0.42 is the best parameter, and when n = 4, µ2 = 0.5,
the value of λ = 0.39 is the best parameter.

6. Conclusions. In this paper, the discrete time Geom/Geom/1 queue with (N, n)-
preemptive priority discipline and multiple working vacation was studied. By the analysis
of the state transition, a discrete time three-dimension MC was built, the stationary
distribution of the queue length was derived by matrix-geometric solution method. We
obtained some numerical examples to illustrate the effect of the parameters on system
measures. By building a utility function, we could reasonably set parameters for the
system and obtain the best parameters which could maximize the individual and social
benefits. For the future, this model can be used in cognitive radio networks, peer-to-peer
network and communication system.
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