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Abstract. Due to low complexity and cost in software and hardware implementations,
received signal strength (RSS) measurements are widely applied to the wireless localiza-
tion. When transmit power is unavailable, an accurate location estimation approach for
RSS-based wireless localization is proposed. The proposed approach obtains the corre-
sponding best linear unbiased estimate for the source location. The simulations demon-
strate the validity of the location estimation approach and test the impacts of noises
on localization errors. The performance of designed approach can achieve the position
Cramer-Rao low bound (CRLB) of the estimation problem in the small noise condition.
Keywords: Wireless sensor networks, Received signal strength, Wireless localization,
Unknown transmit power

1. Introduction. Obtaining accurate positions of sensor nodes in wireless sensor net-
works is important because the positions of sensor nodes are a critical input to many
higher-level networking tasks including the test of ship model self-propulsion, search and
rescue when the passenger ship is in the maritime distress. A straightforward solution
is to equip each sensor node with a GPS receiver that can accurately provide the sen-
sors with their exact location. However, it is not a feasible solution from an economic
perspective since sensor nodes are often deployed in very large numbers and manual con-
figuration is too cumbersome and hence not feasible [1]. Therefore, localization in wireless
sensor networks (WSNs) is very challenging. Over the years many research efforts have
resulted in a plethora of algorithms to enable the location discovery process in WSNs to
be autonomous and able to function independently of GPS and other manual techniques.

In all this literature, the focal point of location discovery has been a set of specialty
nodes known as anchor nodes. These anchor nodes know their location, either through
a GPS receiver or through manual configuration, which they provide to other source
nodes. Using this location of anchor nodes, source nodes compute their location using
various ranging techniques, including time of arrival (TOA) [2], time difference of arrival
(TDOA) [3], angle of arrival (AOA), and received signal strength (RSS) [4, 5] measure-
ments. Among the different types of measurements, RSS-based technique provides an
inherent tradeoff between the accuracy performance and the implementation complexity
due to its low software complexity and hardware cost.

To estimate the source location, some algorithms including maximum likelihood (ML),
semidefinite programming (SDP) method [6] and linear estimator [7] are proposed to
achieve excellent performance. The ML estimator is always solved by the numerical
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method which requires initial solution to ensure the convergence. When the selected ini-
tial solution is far from the actual, it will be trapped in the local optimum. To overcome
the shortcoming of the ML estimator, the SDP and linear estimator are proposed to ob-
tain the robust source location estimates. By relaxing the nonconvex optimization into
convex problem, the SDP method provides robust solution and improves the performance
in the condition of larger noises. However, the complexity of SDP is high. The accuracy
performance of SDP cannot achieve the optimal CRLB due to the relaxation. Linear esti-
mator represents the source location estimates as closed-form solution by converting the
nonlinear optimization function into linear model. The complexity of the linear estimator
is much lower than that of SDP method.

RSS measurement is often modeled as logarithm decay scale and related with the trans-
mit power. However, the transmit power of source node might change with time. In [8]
and [9], the SDP methods are proposed by considering the unknown transmit power.
However, the proposed algorithms run slowly due to the high computational complexity.
When the transmit power is assumed to be unavailable, an accurate linear estimator is
proposed by considering the uncertain anchor positions in this paper. Auxiliary vari-
able based algorithm is introduced to formulate the localization problem as a linear least
squares estimation and obtains the initial estimate for the source location. By employing
the element relationship of the initial estimates, we then present the location refinement
approach to achieve the positioning CRLB based on the prior knowledge of the RSS noises
variance.

2. Problem Specification. In a 2-dimensional geographical area, a sensor network of
size M + N is deployed. Let xi = [xi yi]

T (i = 1, 2, . . . , N) be the unknown coordinates
of the source node to be determined. The known coordinates of M anchor nodes are
denoted as xj = [xj yj]

T , j = 1, 2, . . . , M . When xo
j represents the true position of

anchor node j, xj = xo
j + ∆xj. Here the position of anchor node j is assumed to include

error ∆xj due to the inaccurate measurements. The received power (in dB) at the node
j, pi,j, under log-normal shadowing is modeled as

pi,j = pi,0 − 10βlog10

di,j

di,0

+ ni,j (1)

where pi,0 is the reference power at distance di,0 from the transmit source i (pi,j depends
on the transmit power pi,0). Without loss of generality, di,0 can be set to 1 m. β is called as
path loss exponent. Usually the path-loss exponent values vary in different environments,
and can be obtained in advance for a given environment. The noises ni,j are the log-
normal shadowing terms modeled as independent and identically distributed zero-mean
Gaussian random variables with shadow fading δ2

i,j. The variance of the shadowing term
is constant with distance and only depends on the environment of the deployed nodes.
The distance between source node i and anchor j, denoted by di,j, is

di,j =
√

(xi − xo
j)

2 + (yi − yo
j )

2 (2)

The source nodes can not only connect with anchor nodes but also measure the RSS
between themselves. We assume that each RSS measurement received at the jth node
can be correctly associated to the ith node. Denote the positions of the source nodes, and
transmit powers in vector form by

x =
[
xT

1 xT
2 . . . xT

N

]T
(3)

p0 = [p1,0 p2,0 . . . pN,0]
T (4)

The source transmit powers are considered as nuisance parameters and estimated jointly
with the source node locations. The goal of the proposed algorithm is to estimate x based
on the ranging model depicted as (1) where the transmit power p0 is unavailable.
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3. Algorithm Design. In this section we assume that the anchor positions include
Gaussian errors, the transmit powers are considered as nuisance parameters and esti-
mated jointly with the source locations. The localization algorithm is designed with a
two-step method: initial estimation and location refinement.

3.1. Initial estimation. We start with rewriting (2) as

d2
i,j = 10

pi,0−pi,j+ni,j
5β j ∈ Ai (5)

where i = 1, 2, . . . , N . Ai is the set of the indices of the source node i connected to
the anchor nodes. j ∈ Ai represents that anchor node j is connected to source node
i. For sufficiently small noise, the right-hand side of (5) can be approximated using the
first-order Taylor series expansion as

d2
i,j = λi,j +

λi,jln10

5β
ni,j (6)

where λi,j = 10
pi,0−pi,j

5β .
λi,j ln10

5β
ni,j is a zero-mean Gaussian random variable with variance

λ2
i,j(ln 10)2δ2

i,j

25β2 . Let xj = xo
j + ∆xj, di,j =

√(
xi − xo

j

)2
+

(
yi − yo

j

)2
, and then (6) can also

be represented as

−2xjxi−2yjyi+x2
i +y2

i = −x2
j−y2

j +λi,j+
λi,jln10

5β
ni,j+2 (xi − xj) ∆xj+2 (yi − yj) ∆yj (7)

When the transmit powers are unavailable, (7) is represented as

−2xjxi − 2yjyi + x2
i + y2

i − µi,jρi

= −x2
j − y2

j +
λi,jln10

5β
ni,j + 2(xi − xj)∆xj + 2(yi − yj)∆yj j ∈ Ai (8)

where µi,j = 10−
pi,j
5β , ρi = 10

pi,0
5β and λi,j = µi,jρi. Let ui = [xi yi x2

i + y2
i ρi]

T be the
unknown vector to be estimated. Then (8) can be expressed in matrix form as

Ciui = di + αi (9)

where the row vectors of Ci, di and αi are equal to [−2xj − 2yj 1 −µi,j], [−x2
j − y2

j ]

and
[

λi,j ln10

5β
ni,j + 2(xi − xj)∆xj + 2(yi − yj)∆yj

]
, respectively. Since ni,j is independent

for different anchors, the covariance matrix of error αi, Σi can be written as

Σi = diag

{
λ2

i,jln102

25β2
δ2
i,j + ei,jΣje

T
i,j

}
(10)

where ei,j = [2(xi −xj) 2(yi − yj)], Σj represents the covariance of anchor position error
∆xj. So the WLS solution to (9) is

ui =
(
CT

i Σ−1
i Ci

)−1
CT

i Σ−1
i di (11)

Σi relies on the estimate λi,j which is determined by the transmit power pi,0 and not
available. We preliminarily consider Σi as unit matrix I. Then putting the estimated
initial pi,0 into (10) gives an approximated Σi and using it in (11) would produce a better
solution of the vector ui.

The covariance of ui is denoted as Σu
i , which also can be written as

Σu
i =

(
CT

i Σ−1
i Ci

)−1
(12)

Extracting from ui we obtain the initial estimated position xe
i = ui(1 : 2), ρe

i = ui(4)
and the corresponding transmit power pe

i,0 in the primitive stage. The covariance of xe
i is

represented as Σe
i = Σu

i (1 : 2, 1 : 2). Similarly, by stacking in an ascending order of i, the
initial position estimate xe = [xeT

1 xeT
2 . . . xeT

N ]T is obtained. By taking this relation
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between elements of ui into account and refining the position for wireless localization, we
can obtain the more accurate source location.

3.2. Location refinement. The refinement method is also based on the initial estimate
in (11). Considering the impacts of the source-source measurements, the optimal estimate
of ρi should also be refined. The error of ρi is denoted as ∆ρi. So let xi = xe

i + ∆xi and
ρi = ρe

i + ∆ρi, (8) is rewritten as

2 (xe
i − xj) ∆xi + 2 (ye

i − yj) ∆yi − µi,j∆ρi

= λe
i,j − x2

j − y2
j − xe2

i − ye2
i + 2xe

ixj + 2ye
i yj +

λi,jln10

5β
ni,j j ∈ Ai (13)

where i = 1, 2, . . . , N , λe
i,j = µi,jρ

e
i . Similarly if there are totally L source-anchor mea-

surements, the global matrix form can be written as

J1∆θ = q1 + φ1 (14)

where ∆θ ∈ R3N , J1 ∈ RL×3N , q1 ∈ RL and φ1 ∈ RL. ∆θ = [∆xT ∆ρT ]T denotes
the refined vector, ∆ρ = [∆ρ1 ∆ρ2 . . . ∆ρN ]T and ∆ρi is the refined error in ρi,
i = 1, 2, . . . , N . The row vectors of J1, q1 and φ1 are respectively equal to [01×2(i−1) 2(xe

i−
xj) 2(ye

i − yj) 01×(2N−i−1) − µi,j 01×(N−i)],
[
λe

i,j − x2
j − y2

j − xe2
i − ye2

i + 2xe
ixj + 2ye

i yj

]
and

[
λi,j ln10

5β
ni,j

]
.

Then by considering the source-source measurements, (8) is rewritten as

2xeTQ∆x − µi,j∆ρi = λe
i,j − xeTQxe +

λi,jln10

5β
ni,j j ∈ Bi (15)

where Bi is the set of the indices of the source node i connected to the source node j.
j ∈ Bi represents that source node i is connected to source node j. Here Q ∈ R2N×2N is
represented as a sparse matrix, the non-zero elements of which are given by

Q[2i−1,2i−1] = Q[2i,2i] = 1

Q[2j−1,2j−1] = Q[2j,2j] = 1

Q[2i,2j] = Q[2j,2i] = −1

Q[2i−1,2j−1] = Q[2j−1,2i−1] = −1

(16)

If there are K source-source measurements, the matrix form of (15) is

J2∆θ = q2 + φ2 (17)

where J2 ∈ RK×3N , q2 ∈ RK and φ2 ∈ RK . The row vectors of J2, q2 and φ2 are

respectively equal to [2xeTQ − µi,j], [λe
i,j − xeTQxe] and

[
λi,j ln10

5β
ni,j

]
.

By combining (14) with (17), the matrix form can be rewritten as

J∆θ = q + φ (18)

where J = [JT
1 JT

2 ]T , q = [qT
1 qT

2 ]T and φ = [φT
1 φT

2 ]T . J ∈ R(L+K)×2(N−M), q ∈ RL+K

and φ ∈ RL+K . The covariance matrix for φ, denoted by Σ, is

Σ = diag

{
λ2

i,jln102

25β2
δ2
i,j

}
(19)

Then the best linear unbiased estimate of refined position ∆θ is

∆θ =
(
JTΣ−1J

)−1
JTΣ−1q (20)

Extract from ∆θ to obtain ∆x, which is added to xe for giving a refined version of
the source location vector. In summary, the algorithm first estimates the initial source
location by evaluating (11) and then is applied (20) to refining the source location.
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4. Cramer-Rao Low Bound. The CRLB defines a lower bound on the variance of any
unbiased estimator and is employed as a benchmark for evaluating the performance of
estimators. The CRLB of the unknown parameters is the diagonal elements of the inverse
of the Fisher information matrix (FIM). Since the transmit power of the source nodes
is not available to the estimator, it should also be taken into account as an unknown
parameter. Let us recall the vector of unknown parameter Φ = [xT pT

0 ]T . Here when
the transmit power p0 is unknown, the FIM is denoted as Fu, which is also written as

Fu = −∂2 ln P (p|Φ)

∂ΦT ∂Φ
(21)

where P (p|Φ) =
N∏

i=1

M+N∏
j=1

1√
2πδi,j

exp
{
− (pi,j−pi,0+10βlog10di,j)

2

2δ2
i,j

}
, i = 1, 2, . . . , N , j = 1, 2, . . .,

M + N and i < j, Fu ∈ R3N×3N . Therefore, Fu can be further represented as

Fu =

[
F U
UT V

]
(22)

where

F = −∂2 ln P (p|x)

∂xT ∂x
(23)

The elements of matrix F ∈ R2N×2N can be further represented as

[F]2i−1:2i,2i−1:2i =
∑
j

100β2

(ln10)2δ2
i,j

(xi−xj)
T (xi−xj)

d4
i,j

j ∈ Ai ∪ Bi

[F]2i−1,2j−1 = [F]2j−1,2i−1 = −100β2

(ln10)2δ2
i,j

(xi−xj)
2

d4
i,j

j ∈ Ai

[F]2i−1,2j = [F]2j,2i−1 = −100β2

(ln10)2δ2
i,j

(xi−xj)(yi−yj)

d4
i,j

j ∈ Ai

[F]2j−1,2i = [F]2i,2j−1 = −100β2

(ln10)2δ2
i,j

(xi−xj)(yi−yj)

d4
i,j

j ∈ Ai

[F][2j,2i] = [F]2i,2j = −100β2

(ln10)2δ2
i,j

(yi−yj)
2

d4
i,j

j ∈ Ai

(24)

The elements of matrices U ∈ RN×2N and V ∈ RN×N are rewritten as [U]2i−1:2i = 10β
(ln10)δ2

i,j

(xi−xj)

d3
i,j

j ∈ Ai ∪ Bi

[V]i =
∑
j

1
δ2
i,j

j ∈ Ai ∪ Bi
(25)

So the CRLB of source locations is denoted as CRLB([x]r), which can be calculated by

CRLB([x]r) = [F − UV−1UT ]−1
r,r (26)

where r = 1, 2, . . . , 2N .

5. Evaluation.

5.1. Impacts of noises. To test the performance of location refinement, we conduct a
group of simulations with 12 nodes deployed in a 100 m × 100 m square region. We
randomly select 6 nodes as anchors which are used to locate other 6 source nodes. When
the range between nodes is less than 80 m, the RSS is considered as measurable. The
transmit power p0 is set at −45 dB and assumed to be unknown. Path loss exponent β
is set to 2. All results are averages of 1000 independent Monte Carlo (MC) runs.

When the shadow fading δ2 is varied from 0.022 to 0.22, Figure 1 plots the performance
with different methods under different shadow fading δ2. Only source-anchor measure-
ments are involved into the noncooperative refinement, so the mean square error (MSE)
in log scale of noncooperative refinement is larger than that of the cooperative refine-
ment which utilizes not only the source-anchor measurements but also the source-source
measurements. It can be seen from Figure 1 that the position MSE in log scale is approx-
imately linear with the shadow fading δ2 in log scale. The MSE performance degrades
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Figure 2. Performance comparison of different methods

as the shadow fading δ2 increases. For instance, when the shadow fading δ2 in log scale
is set to −34 dB, the position MSE in log scale of initial estimation is about −26.4 dB.
When the shadow fading δ2 in log scale is set to −14 dB, the position MSE in log-scale
of initial estimation is 17.2 dB.

5.2. Comparison with different methods. In this subsection, the transmit power
p0 is set at −45 dB and assumed to be known or unknown. When δ2 is also set to
0.12, Figure 2(a) plots the performance comparison of different conditions with known
or unknown transmit power. The MSE in log scale of each located node under known
transmit power is always less than that of unknown transmit power. For example, when
the transmit power is assumed to be known, the MSE in log scale of node 1 is –15.6 dB,
which is less than –12.3 dB under unknown transmit power.

Similar to the impact of received signal noises, the simulations are conducted to test the
performance comparison under different methods. When Σj is set to [0.12 0; 0 0.12]
and δ2 is varied from 0.022 to 0.22 (The shadow fading δ2 in log scale is varied from −34
dB to −14 dB), Figure 2(b) plots the performance comparison of different conditions as
the received signal noises increase. u-CRLB represents the CRLB of unknown transmit
power which is calculated according to [9]. When the noises are all set to 0.022 and the
transmit power is assumed to be known, the MSE in log scale is −44.6 dB, which is
approximately identical to the position CRLB. When the transmit power is considered as
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unknown, the MSE in log scale is −39.0 dB, which is close to −39.6 dB of u-CRLB. The
performance of SDP algorithm is denoted as u-SDP by considering the transmit power as
unknown. Compared with that of u-SDP, the MSE in log scale of our proposed algorithm
is reduced by about 2 dB with unknown transmit power.

6. Conclusion. The location estimation approach is proposed for RSS-based wireless
localization by considering the unknown transmit power. In the stage of initial estimation,
the preliminary source locations are obtained by converting the nonlinear equation into
the linear equation. Then the location refinement technique is introduced to improve the
preliminary locations by utilizing the source-source RSS measurements. Compared with
the SDP method, our proposed refinement algorithm can improve localization accuracy
significantly when the noises are small. However, the performance of the proposed location
estimation approach is not very good in the larger noise condition. The next works are
focused on the robustness of the location estimation approach especially when the noises
are large.
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