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Abstract. This paper investigates the state estimation problem for discrete-time linear
control systems, where sensors and controllers are connected via a stationary memoryless
uncertain digital channel. On the basis of a fixed-length coding scheme, a fixed data rate
is employed to transmit information of the plant state in order to ensure observability.
In particular, we deal with the case where system matrix has distinct eigenvalues with
algebraic multiplicity larger than one, and present necessary and sufficient conditions on
the data rate of the channel for observability. It is shown in our results that, there exists
a lower bound on the data rate above which the system is observable.
Keywords: State estimation, Multiple eigenvalues, Fixed data rate, Lower bound,
Discrete-time linear systems

1. Introduction. In recent years, the field of quantized control has developed rapidly in
many applications where sensors and controllers communicate over channels with limited
data rate [1-3]. The data rate limitations in these applications have a significant effect on
state estimation of networked control systems [4,5].

The research on Gaussian linear systems was addressed in [6]. Information theory was
employed in control systems as a powerful conceptual aid, which extended existing fun-
damental limitations of feedback systems, and was used to derive necessary and sufficient
conditions for robust stabilization of uncertain linear systems, Markov jump linear sys-
tems and unstructured uncertain systems [7-9]. Control under communication constraints
inevitably suffers signal transmission delay, data packet dropout and measurement quan-
tization which might be potential sources of instability and poor performance of control
systems [10]. [11] investigated the quantized feedback control problem for stochastic time-
invariant linear control systems. A predictive control policy under data-rate constraints
was proposed to stabilize the unstable plant in the mean square sense. [12] addressed
LQ (linear quadratic) control of MIMO (multi-input multi-output), discrete-time linear
systems, and gave the inherent tradeoffs between LQ cost and data rates. In [13], a
quantized-observer based encoding-decoding scheme was designed, which integrated the
state observation with encoding-decoding. [14] addressed some of the challenging issues on
moving horizon state estimation for networked control systems in the presence of multiple
packet dropouts.

In this paper, we consider the state estimation problem for discrete-time linear control
systems, deal with the case where system matrix has distinct eigenvalues with algebraic
multiplicity larger than one, and present necessary and sufficient conditions on the data
rate of the channel for observability. In particular, on the basis of a fixed-length coding
scheme, a fixed data rate is employed to transmit information of the plant state in order
to ensure observability. Here, we stress that, the fixed data rate is not viewed as a special
case of the time-varying data rate. The case with a time-varying data rate often employs
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the variable-length encoding scheme, and ensures control performance in an average or
expected sense. However, for the case with a fixed data rate, control performances can
be guaranteed at any time for control systems. Our work here differs in that we present
a lower bound on the fixed data rate for state estimation in the presence of multiple
eigenvalues.

The remainder of this paper is organized as follows: Section 2 introduces problem
formulation; Section 3 deals with the state estimation problem for discrete-time linear
control systems; Conclusions are stated in Section 4.

2. Problem Formulation. Consider the discrete-time linear system

X(k + 1) = AX(k),
Y (k) = CX(k)

(1)

where X(k) ∈ Rn is the state process, and Y (k) ∈ Rm is the measured output. A and C
are known constant matrices with appropriate dimensions. Here, it is assumed that the
pair (A,C) is observable. Let Bl(z) denote the set {x : |x − z| ≤ l} centered at z. The
initial state X(0) is a bounded, uncertain variable satisfying ∥X(0)∥ ∈ Bϕ0(0), where ϕ0

is a known constant.
In the literature, it is often assumed that there exists a nonsingular real matrix H that

diagonalizes A = H ′ΛH, where Λ = diag[a1, a2, · · · , an]. In such case, it is convenient to
transform the system (1) so as to decouple its dynamical modes. However, it is impossible
to find such a matrix H that diagonalizes A in many cases.

Without loss of generality, we put the system matrix A into Jordan canonical form in
this paper. As stated in [15], there exists a real similarity matrix H ∈ Rn×n such that

G = HAH ′ =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jd

 (2)

holds. Let a1, a2, · · · , ad denote the distinct eigenvalues of system matrix A, and let the
algebraic multiplicity of each ai be ni (i = 1, 2, · · · , d). Clearly, n1 + n2 + · · · + nd = n.
Then, the block Ji can be written as

Ji =


ai 1 · · · 0 0
0 ai · · · 0 0
...

...
. . .

...
...

0 0 · · · ai 1
0 0 · · · 0 ai

 ∈ Rni×ni , (3)

where each ai is larger than 1 (i = 1, 2, · · · , d) since the stable part does not play any key
role on observability of the system (1).

Furthermore, the transformed state is defined as

X̄(k) := HX(k).

Then, the system (1) can be rewritten as

X̄(k + 1) = GX̄(k),
Y (k) = CH ′X̄(k).

(4)

Here, we partition the transformed state vector X̄(k) into the vectors X̄(k, 1), X̄(k, 2), · · · ,
X̄(k, d) corresponding to each subsystem. Then, the ith subsystem can be written as

X̄(k + 1, i) = JiX̄(k, i), i = 1, 2, · · · , d. (5)

Namely, the system (4) is decomposed into d subsystems. We define X̃(k) := HX̂(k) and
Ē(k) := HE(k). Then, we also partition X̃(k) and Ē(k) into the vectors X̃(k, 1), X̃(k, 2),
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· · · , X̃(k, d) and the vectors Ē(k, 1), Ē(k, 2), · · · , Ē(k, d), respectively. For the ith sub-
system, we set

X̄(k, i) := [x̄1(k, i) x̄2(k, i) · · · x̄ni
(k, i)]′,

X̃(k, i) := [x̃1(k, i) x̃2(k, i) · · · x̃ni
(k, i)]′,

Ē(k, i) := [ē1(k, i) ē2(k, i) · · · ēni
(k, i)]′.

In this paper, we consider the case where the sensors and controllers are geographically
separated and connected by a stationary memoryless uncertain digital channel without
data dropout and time delay. At each time step the channel can transmit without error
R bits of the information on the plant states that is provided by the sensors. Specifically,
we deal with the case where the data rate R provided by such a channel is an invariant
constant. Namely, the plant state is quantized, and encoded by the fixed-length coding
scheme [16].

Let X̂(k) and E(k) denote the state estimate and the estimation error, respectively.
We define the estimation error as

E(k) := X(k) − X̂(k).

X(k) is causally encoded via an operator Θ as

α(k) = Θ(k, X(0), X(1), · · · , X(k)), (6)

where the codeword α(k) is transmitted over such a channel, and decoded via an operator
Υ as

X̂(k) = Υ (k, α̂(0), α̂(1), · · · , α̂(k)) , (7)

where α̂(k) denotes the received symbol at the decoder.
The system (1) is observable if there exists an encoder and decoder such that the

following holds:
lim supk→∞ ∥E(k)∥ < ∞. (8)

In this paper, we consider the system (1) with multiple eigenvalues, and argue the state
estimation problem under the data rate limitation. The main task here is to present a
lower bound on the data rate for observability of the system (1).

3. A Lower Bound on the Data Rate for Observability. In this section, we deal
with the state estimation problem for discrete-time linear system over a digital commu-
nication channel, and present a lower bound on the data rate for observability. Here,
we will derive necessary and sufficient conditions on the data rate for observability in
the presence of multiple eigenvalues. Namely, we investigate the minimum data rate for
observability of the system (1).

The main result of this section is given below.

Theorem 3.1. Consider the system (1) with multiple eigenvalues in the sense (2). The
plant state is coded and estimated by the schemes (6) and (7), respectively. Then, the
necessary and sufficient condition on the data rate R for observability is that

R ≥ ⌈
∑d

i=1 ni log2 ai⌉ (bits/sample),

where ⌈·⌉ represents the ceil function, and is defined as ⌈x⌉ := min{k ∈ Z : k > x}.

Proof: Notice that

∥X̄(0)∥ = ∥HX(0)∥ ≤ ∥H∥ · ∥X(0)∥ ∈ B∥H∥ϕ0(0).

Clearly, we have

x̄j(0, i) ∈ B∥H∥ϕ0(0), j = 1, 2, · · · , ni; i = 1, 2, · · · , d. (9)

Furthermore, we set
X̃(0) = HX̂(0) = 0.
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Then, we obtain
ēj(0, i) = x̄j(0, i) − x̃j(0, i) ∈ B∥H∥ϕ0(0).

For any time k, we assume that

x̄j(k, i) ∈ Blj(k,i)(Cj(k, i))

holds. Then, we have

x̃j(k, i) = Cj(k, i),
ēj(k, i) = x̄j(k, i) − x̃j(k, i) ∈ Blj(k,i)(0).

Here, we divide the range Blj(k,i)(Cj(k, i)) into m(i, j) ∈ N equal intervals. It follows
from [16] that the corresponding data rate R(i, j) must satisfy the following inequality:

R(i, j) ≥ ⌈log2 m(i, j)⌉ (bits/sample). (10)

Furthermore, it follows from (5) that

x̄ni
(k + 1, i) = aix̄ni

(k, i), i = 1, 2, · · · , d.

At time k + 1, we have

x̄ni
(k + 1, i) ∈ Blni (k+1,i)(Cni

(k + 1, i)),
x̃ni

(k + 1, i) = Cni
(k + 1, i),

ēni
(k + 1, i) = x̄ni

(k + 1, i) − x̃ni
(k + 1, i) ∈ Blni (k+1,i)(0),

where
lni

(k + 1, i) = ai

m(i,ni)
lni

(k, i). (11)

Combined with the equalities (9) and (11), this implies that

lni
(k, i) =

(
ai

m(i,ni)

)k

∥H∥ϕ0. (12)

Then, we have
limk→∞ lni

(k, i) = 0,

if the following inequality holds:
m(i, ni) > ai. (13)

Thus, we obtain
lim supk→∞ |ēni

(k, i)| = 0. (14)

Similarly, it follows from (5) that

x̄j(k + 1, i) = aix̄j(k, i) + x̄j+1(k, i), i = 1, 2, · · · , d; j = 1, 2, · · · , ni − 1.

At time k + 1, we have

x̄j(k + 1, i) ∈ Blj(k+1,i)(Cj(k + 1, i)),
x̃j(k + 1, i) = Cj(k + 1, i),

ēj(k + 1, i) = x̄j(k + 1, i) − x̃j(k + 1, i) ∈ Blj(k+1,i)(0),

where

lj(k + 1, i) = ai

m(i,j)
lj(k, i) + lj+1(k, i) i = 1, 2, · · · , d; j = 1, 2, · · · , ni − 1. (15)

Combined with the equalities (9) and (15), this implies that

lj(k, i) =

[
1 +

(
ai

m(i,j)

)2

+ · · · +
(

ai

m(i,j)

)k
]
∥H∥ϕ0. (16)

Then, we have
limk→∞ lj(k, i) = 1

1− ai
m(i,j)

∥H∥ϕ0,

if the following inequality holds:
m(i, j) > ai. (17)
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Thus, we obtain

lim supk→∞ |ēj(k, i)| = 1
1− ai

m(i,j)

∥H∥ϕ0, i = 1, 2, · · · , d; j = 1, 2, · · · , ni − 1. (18)

Combined with the equalities (14) and (18), this implies that

limk→∞ ∥E(k)∥ < 1
1− ai

m(i,j)

∥H∥ϕ0.

Thus, the system (1) is observable if the inequalities (13) and (17) hold. This implies that

R ≥ ⌈
∑d

i=1 ni log2 ai⌉ (bits/sample). (19)

The proof of sufficiency is complete.
Conversely, if the system (1) is observable, we have

limk→∞ ∥E(k)∥ < ∞.

It means that

lim supk→∞ |ēj(k, i)| < ∞, i = 1, 2, · · · , d; j = 1, 2, · · · , ni.

It follows from (12) and (16) that the following inequality must hold:

m(i, j) > ai, i = 1, 2, · · · , d; j = 1, 2, · · · , ni. (20)

Combined with the equalities (10) and (20), this implies that the inequality (19) must
hold. The proof of necessity is complete. �

Clearly, it is shown in Theorem 3.1 that, the system (1) is observable if the fixed data
rate is larger than the lower bound given, which is different from ones in the literature.
Furthermore, the data rate in our results is fixed, but ones in the literature are time
varying. Using the fixed data rate may lead to better control performances.

Furthermore, we also consider the case where there exists a nonsingular real matrix
that can diagonalize the system matrix, and give the following result.

Corollary 3.1. Consider the system (1). The plant state is coded and estimated by the
schemes (6) and (7), respectively. Assume that there exists a nonsingular real matrix H
that diagonalizes A = H ′GH, where G = diag[a1, a2, · · · , an]. Then, the necessary and
sufficient condition on the data rate R for observability is that

R ≥ ⌈
∑n

i=1 log2 ai⌉ (bits/sample).

Proof: By the assumption, we know that a1, a2, · · · , an are the distinct eigenvalues of
system matrix A. Namely, we have

n1 = n2 = · · · = nn = 1.

Thus, it follows from (19) that

R ≥ ⌈
∑n

i=1 log2 ai⌉ (bits/sample).

Thus, the proof is complete. �

4. Conclusions. In this paper, we addressed the state estimation problem in the pres-
ence of multiple eigenvalues, and derived the necessary and sufficient conditions on the
data rate for observability. Clearly, the data rate of the channel has important effects on
observability of networked control systems. However, communication bandwidth is not
large enough to ensure the real-time data transmission between sensors and controllers in
many applications. Thus, it is necessary and significant to present a lower bound on the
data rate for observability of linear control systems. The study of nonlinear system with
limited data rate will be our future work.



2764 Q. LIU

REFERENCES

[1] J. Baillieul and P. Antsaklis, Control and communication challenges in networked real time systems,
Proc. of IEEE Special Iss. Emerg. Technol. Netw. Control Syst., pp.9-28, 2007.

[2] G. N. Nair, F. Fagnani, S. Zampieri and R. J. Evans, Feedback control under data rate constraints:
An overview, Proc. of IEEE Special Iss. Emerg. Technol. Netw. Control Syst., pp.108-137, 2007.

[3] P. Minero, M. Franceschetti, S. Dey and G. N. Nair, Data rate theorem for stabilization over time-
varying feedback channels, IEEE Trans. Automatic Control, vol.54, no.2, pp.243-255, 2009.

[4] M. Fu, Lack of separation principle for quantized linear quadratic Gaussian control, IEEE Trans.
Automatic Control, vol.57, no.9, pp.2385-2390, 2012.

[5] Y. Liu and W. Che, The problem of h-infinity control for discrete-time networked control systems
with limited bandwidth, ICIC Express Letters, vol.9, no.9, pp.2401-2408, 2015.

[6] S. Tatikonda and S. K. Mitter, Control under communication constraints, IEEE Trans. Automatic
Control, vol.49, no.7, pp.1056-1068, 2004.

[7] N. C. Martins, M. A. Dahleh and N. Elia, Feedback stabilization of uncertain systems in the presence
of a direct link, IEEE Trans. Automatic Control, vol.51, no.3, pp.438-447, 2006.

[8] N. C. Martins and M. A. Dahleh, Feedback control in the presence of noisy channels: ‘Bode-like’
fundamental limitations of performance, IEEE Trans. Automatic Control, vol.53, no.7, pp.1604-1615,
2008.

[9] A. Sahai and S. Mitter, The necessity and sufficiency of anytime capacity for stabilization of a linear
system over a noisy communication link Part I: Scalar systems, IEEE Trans. Automatic Control,
vol.52, no.8, pp.3369-3395, 2006.

[10] K. Liu, E. Fridman and L. Hetel, Stability and L2-gain analysis of networked control systems under
round-robin scheduling: A time-delay approach, Systems & Control Letters, vol.61, no.5, pp.666-675,
2012.

[11] Q. Liu, F. Jin and Z. Yuan, Networked control for linear systems with time delays using limited data
rates, ICIC Express Letters, vol.9, no.8, pp.2189-2195, 2015.

[12] Q. Liu and F. Jin, LQ control of networked control systems with limited data rates, ICIC Express
Letters, Part B: Applications, vol.5, no.6, pp.1791-1797, 2014.

[13] T. Li and L. Xie, Distributed coordination of multi-agent systems with quantized-observer based
encoding-decoding, IEEE Trans. Automatic Control, vol.57, no.12, pp.3023-3037, 2012.

[14] B. Xue, S. Li and Q. Zhu, Moving horizon state estimation for networked control systems with
multiple packet dropouts, IEEE Trans. Automatic Control, vol.57, no.9, pp.2360-2366, 2012.

[15] R. A. Horm and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, U.K., 2013.
[16] T. Cover and J. Thomas, Elements of Information Theory, Wiley, New York, 2006.


