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Abstract. A large proportion of industrial systems can be represented by linear time-
invariant transfer functions. The proportional-integral-derivative (PID) controller is one
of the most commonly used controllers in industrial enterprises. The lead-lag (or lag-
lead) controller is a more practical alternative to the PID controller. This paper focuses
on the optimization of a time-domain objective function for a generalized controller sim-
ilar to a lead-lag controller. The proposed objective function includes eight time-domain
specifications, including delay time, rise time, and peak time. In this research, the flower
pollination algorithm (FPA) is applied to determine the optimal solutions. FPA is a
recently developed metaheuristic optimization method. The algorithm emulates biological
flower pollination. If a plant can be modeled as a linear time-invariant transfer function,
then the proposed method can be used to design a corresponding controller, which may
meet specifications exactly or approximately.
Keywords: Flower pollination algorithm, Lead-lag controller, Meta-heuristic optimiza-
tion

1. Introduction. Most industrial plant systems can be represented by linear time-invari-
ant transfer functions. Proportional-integral-derivative (PID) controllers are probably the
most commonly used controllers in industrial applications. Several methods have been
proposed for tuning PID controller parameters [1-4].

Lead-lag controllers provide a more practical alternative to PID controllers. The design
of lead-lag controllers has been studied in the past [5,6]. Ou and Lin proposed a method
based on a genetic algorithm and particle swarm optimization to design a PID controller
[7]. Horng used cuckoo search to design a lead-lag controller [8]. Yang’s flower pollination
algorithm is one of the latest metaheuristic techniques [9]. A multiobjective variant of the
flower pollination algorithm was also published [10]. Cuevas et al. compared five evolu-
tionary computation techniques: swarm optimization, artificial bee colony optimization,
electromagnetism-like optimization, cuckoo search, and flower pollination [11]. In that
research, the flower pollination algorithm showed the same performance as cuckoo search,
and greater performance than the other techniques. A flower pollination algorithm is
more straightforward and easier to program than a cuckoo search. Therefore, a flower
pollination algorithm was used in this study.

A generalized version of a lead-lag controller is proposed and discussed in Section 2.
Time-domain objective functions are presented in Section 3. In Section 4, a flower pol-
lination algorithm and its design procedure are discussed. Two illustrative examples are
presented in Section 5, and the conclusions are presented in Section 6.
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2. Generalized Lead-lag-like Controller. The transfer function of a lead-lag-like con-
troller is written as

Gc(s) = K

(
T1s + 1

αT1s + 1

)
·
(

T2s + 1

βT2s + 1

)
, (1)

where K > 0, α > 0, T1 > 0, β > 0, and T2 > 0. The proposed controller could
be a lead-lag, two-stage phase-lead, or two-stage phase-lag controller, depending on the
parameters α and β. This general-purpose lead-lag-like controller is more useful than a
lead-lag (lag-lead) controller.

3. Time-domain Objective Functions. The unit-step response is the response of a
control system when the input is a unit-step function. Let y(t) be the unit-step response
and yss the steady state. Some well known unit-step responses are delay time Td, rise time
Tr, percentage maximum overshoot %OS, setting time Ts, and steady-state error Ess [1].
For a more general system, the following specifications are defined:

1). First peak time, Tf , is the time required to reach the first peak.
2). Maximum peak time, Tm, is the time required to reach the maximum peak.
3). Percentage maximum undershoot, %US, is defined as

yus = min(y(t)), t ≥ Tf , %US =


(yss − yus)

yss

, if yus < yss,

0, if yus ≥ yss.
(2)

For a second-order system, the first peak time is equal to the maximum peak time.
However, for a general system, these two quantities are not always equal. To establish
the proposed time-domain objective function, the deviation ratio (DR) is first defined as
follows.

DR(TDS) = f(K,α, T1, β, T2|TDS)

=


0, if lb ≤ f(K, α, T1, β, T2|TDS) ≤ ub

f(K, α, T1, β, T2|TDS) − ub

ub
, if f(K,α, T1, β, T2|TDS) > ub

lb − f(K, α, T1, β, T2|TDS)

lb
, if f(K,α, T1, β, T2|TDS) < lb

(3)
where each TDS is some time-domain specification, which might be one of delay time,
rise time, percentage maximum overshoot, or some other specification. The controller
parameters are K, α, T1, β, and T2, as given by Equation (1). The objective function
includes eight specifications, namely, delay time, rise time, first peak time, maximum
peak time, percent maximum overshoot, percent maximum undershoot, setting time, and
steady-state error. DR, given by Equation (3), is a measure of how close a value is to a
desired interval. In practical designs, some tolerances in time-domain specifications are
allowed. Each TDS has a lower bound (lb) and an upper bound (ub). If some DR is zero,
the corresponding specification in the desired interval is fully satisfied.

Next, the following objective function is proposed:

TDOF =
[
w1DR2(Td) + w2DR2(Tr) + w3DR2(%OS) + w4DR2(Ts)

+w5DR2(Ess) + w6DR2(Tf ) + w7DR2(Tm) + w8DR2(%US)
]
/TW

(4)

where TW =
∑8

i=1 wi. In Equation (4), wi represents weights that reflect the relative
priorities of the corresponding terms. Consequently, the controller design problem is
essentially the minimization of TDOF for all possible parameters. Equations (1) to (4)
are improved versions of those in reference [8].
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4. Flower Pollination Algorithm and Design Procedure. Yang [9] emulated bio-
logical flower pollination to construct an optimization algorithm based upon the following
rules.

1). The global pollination processes are biotic pollination and cross-pollination through
which pollens are transported pollinators that conduct random walks of the Lévy flight
type.

2). Local pollination is regarded as abiotic and is a form of self-pollination.
3). Reproduction probability depends on flower constancy, which is related to the resem-

blance between the two flowers involved in pollination.
4). The algorithm determines local and global pollination according to a probability rep-

resented as p ∈ [0, 1]. Local pollination occurs if the algorithm generates a random
number less than or equal to p; this simulates the processes of pollination that results
from physical proximity and wind.

Taking inspiration from these idealized characteristics, we can construct a flower-based
algorithm which can be called the flower pollination algorithm (FPA). This algorithm has
two key steps, namely, global pollination and local pollination. In the global pollination
step, flower pollen gametes are transported by pollinators such as insects; thus, pollen
can be moved over long distances because insects often cover considerably long distances.
This is the best fit between pollination and reproduction, and we represent it as g∗. The
flower constancy can be denoted as

xt+1
i = xt

i + L
(
xt

i − g∗) (5)

where xt
i is the solution vector xi for a pollen i at iteration t, and g∗ is the best fit solution

among all solutions at the current iteration or generation. Lévy flight is used to represent
the movement of insects; hence, L > 0 from the Lévy distribution

L ∼ λΓ(λ) sin(πλ/2)

π
· 1

s1+λ
, (s ≥ s0 > 0) (6)

In Equation (6), Γ(λ) is a standard gamma function, and the distribution is valid for
large steps (s > 0). Then, to develop local pollination, both Rule 2 and Rule 3 can be
represented as

xt+1
i = xt

i + ε
(
xt

j − xt
k

)
(7)

where xt
j and xt

k represent pollen from different flowers of the same plant species. This
way, flower constancy in a limited neighborhood is mimicked. Mathematically, if xt

j and xt
k

are from the same species or chosen from the same population, Equation (7) is equivalent
to a local random walk if we draw ε from a uniform distribution in [0, 1]. By Rule 4,
we can use the switch probability p to switch from global pollination to intensive local
pollination.

In the design procedure, a second-order system with satisfactory operation is designated
as the reference standard. All the eight desired specifications, lower bounds, and upper
bounds are tabulated. Subsequently, a solution vector set xi = (Ki, αi, T1i, βi, T2i) and
flower pollination are used to determine the minimum value of TDOF from Equation (4).
To save computing time, the initial values are preselected. The initial values are chosen
such that the closed-loop system stability is maintained. The stability is determined using
the Routh-Hurwitz criterion. The maximal number of iterations is 750 and p = 0.8. The
optimization process is hierarchical. First, FPA is run 30 times to obtain 30 distinct
minimal values. These 30 minimal values constitute the elite group in later calculations.
Next, FPA is run one more time, the elite group values are used as initial values in this
iteration. The final results obtained are the parameters for the design of the controller.
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5. Illustrative Examples. Two numerical examples of unity feedback systems are pro-
vided below.

Example 5.1. We consider a unity feedback system with the following forward transfer
function:

Gp(s) =
180

s2 + 18s + 80
.

The forward-path transfer function is type 0, and the closed-loop system is stable. The
step response of the uncompensated system is shown in Figure 1. The peak time is 2.76
s, the percentage overshoot is 20.50%, and the steady-state error Ess is 0.6923.

The response of the uncompensated system is not satisfactory. Hence, a controller is
used to improve the transient response. We choose a well-behaved second-order system as
the reference standard. The desired specifications are listed in Table 1. We set each weight
wi to be 1. After the design procedure has been completed, the obtained parameters are
K = 38.9011, α = 20.7979, T1 = 0.1421, β = 0.1516, and T2 = 0.0939. Since all the
specifications are in the desired range, all the deviation ratios are zeros, as listed in Table
1. The designed controller fully meets all the desired specifications. The compensated
step response is shown in Figure 2.

Figure 1. Uncompensated step response for Example 5.1

Table 1. Desired specifications and designed values for Example 5.1

Specification Desired interval wi Designed value DR (TDS )
Tp [0.0988, 0.1008] 1 0.0990 0.0000
Tm [0.0988, 0.1008] 1 0.0990 0.0000
Tr [0.0477, 0.0487] 1 0.0486 0.0000
Td [0.0307, 0.0314] 1 0.0309 0.0000

%OS ≤ 0.03 1 0.0217 0.0000
%US ≤ 0.02 1 0.0063 0.0000
Ts ≤ 0.1035 1 0.1006 0.0000
Ess ≤ 0.22 1 0.0113 0.0000
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Figure 2. Compensated step response for Example 5.1

Example 5.2. We consider a unity feedback system with the following forward transfer
function:

Gp(s) =
800

(s + 2)(s + 4)(s + 8)
.

The closed-loop system is unstable. The step response of the uncompensated system
is shown in Figure 3. Let us follow the same procedure as in Example 5.1. The desired
specifications are listed in Table 2. After the design procedure is finished, the obtained
parameters are K = 7.6370, α = 84.1030, T1 = 0.5561, β = 0.0100, and T2 = 0.1395. All
the desired specifications are satisfied. The compensated step response is shown in Figure
4.

Figure 3. Uncompensated step response for Example 5.2
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Table 2. Desired specifications and designed values for Example 5.2

Specification Desired interval wi Designed value DR (TDS )
Tp [1.4850, 1.5132] 1 1.4857 0.0000
Tm [1.4850, 1.5132] 1 1.4857 0.0000
Tr [0.7168, 0.7313] 1 0.7260 0.0000
Td [0.4611, 0.4704] 1 0.4632 0.0000

%OS ≤ 0.03 1 0.0206 0.0000
%US ≤ 0.02 1 0.0033 0.0000
Ts ≤ 1.5150 1 1.5104 0.0000
Ess ≤ 0.011 1 0.0104 0.0000

Figure 4. Compensated step response for Example 5.2

6. Conclusions. Numerous industrial plant systems can be represented by linear time-
invariant transfer functions. In this paper, a design procedure using a flower pollination
algorithm is proposed; the designed controllers meet specifications exactly or approx-
imately. The proposed time-domain objective function is expressed in terms of eight
specifications, including delay time, rise time, first peak time, maximum peak time, per-
cent maximum overshoot, percent maximum undershoot, setting time, and steady-state
error. Therefore, the controller design problem is basically the minimization of TDOF
for all possible parameters. Computer simulations validate the usefulness of the pro-
posed method. In future, the proposed method may be modified to design controllers for
time-delay systems.
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