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Abstract. In this paper, a new design method for a self-repairing control system (SRCS)
with two adaptive tuners is presented for plants with unknown parameters and lost sen-
sor. The developed SRCS has two automatic mechanisms, which are self-repairing and
adaptive parameter tuning mechanisms. The self-repairing function can attain to replace
the failed sensor with the backup, and the adaptive tuning function adjusts the controller
parameters against unknown plant parameters. This paper shows a theoretical analysis
of stability and self-repairing performance, and also explores a simulation to confirm the
effectiveness.
Keywords: Self-repairing, Adaptive and robust control, Dead zone, Sensor failure

1. Introduction. Self-repairing control (SRC) is one of the active and intelligent fault
tolerant control (FTC) methods [1, 2]. This kind of the FTC can automatically detect
the failure and replace the failed control components with the healthy backups. In the
previous works [2, 3], for the SRC system (SRCS), the nonlinear and unstable detection
filter has been developed that can guarantee exact and early detection against sensor
failure of a stuck type. By using this filter, one can specify the maximum detection time
in advance. Also, based on high-gain feedback [4], the structure of the SRCS can be
simplified, which does not depend on the order of the mathematical model of the plant.
However, in designing the controller, it is assumed that the plant parameters are known.
As a remedy, an adaptive controller of a switching type has been proposed in [3] where
the gain p of the output feedback controller u = −py is adjusted as follows.

p(t) = (p0)
k, t ∈ [tk, tk+1), p0 > 1

where k = 0, 1, · · · , is the number of switches, and tk ∈ R+ is the k-th switching time.
Of course, the stability of the overall SRCS can be guaranteed theoretically. However,
unfortunately, fast-switching often occurs, and the switched gain p sometimes becomes
extremely large. For example, if p0 is set as p0 = 10, then just four switches, k = 4, makes
p grow to 10000.

As a countermeasure for this problem, this paper proposes a new design method for the
SRCS with two adaptive tuners of continuously adjusting laws. By using these tuners,
instead of the above-mentioned switched p, it is expected that the feedback gain p can
be adequately tuned and one can avoid the excessive adjustment. Furthermore, to cope
with the nonlinearity of the detection filter, the well-known dead zone technique [5, 6] is
exploited in the adjusting laws.

This paper is organized as follows. In Section 2, the problem on the SRC against sensor
failures is described. Section 3 explains a concrete design method for the SRCS with the
two adaptive tuners, and also shows the theoretical results on the SRC performance,
that is, fault detection, stability and asymptotic convergence of the plant output to the
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residual region. In Section 4, several numerical simulation results are shown to confirm
the effectiveness of the proposed SRCS. Finally, we conclude in Section 5.

2. Problem Statement. Consider a linear time invariant system of the form [4]:

ΣP : ẏ = ay + bu + hT z

ż = Fz + gy (1)

where y ∈ R is the actual output, u : R+ → R is the control input, and z ∈ Rn−1 is
the state of the plant. Furthermore, a ∈ R, b ∈ R, F ∈ Rn−1×(n−1) and g ∈ Rn−1 are
unknown constants, a matrix and a vector respectively. Here, we assume that the plant
ΣP has minimum-phase characteristic, and the sign of high-frequency gain b is supposed
to be positive.

To measure the output y, the two sensors ♯1 (primary) and ♯2 (backup) are exploited.
Thus, the measured signal is given by

yS(t) =

{
y1(t) (t ≤ tD)
y2(t) (t > tD)

(2)

where tD ∈ R+ is a failure detection time, which will be defined later. Each yi ∈ R,
i ∈ {1, 2} is the output of the sensor ♯i. If the sensors are healthy, then we have yi = y.
From (2), if the failure of the primary sensor ♯1 is detected, then the backup ♯2 is activated.

The failure scenario to be considered here is given as follows.

y1(t) = 0, t ≥ tF (3)

where tF ∈ R+ is an unknown failure time.
The SRC problem is to replace the failed sensor automatically so as to maintain the

control system stability. The following section will show the concrete design procedure
for the SRCS, and analyze the performances theoretically.

3. Design of the SRCS with the Adaptive Tuners.

3.1. Basic structure. First of all, we introduce the detection filter ΣD as follows.

v̇ = |v| + γ + ẏS + p1yS (4)

where γ ∈ R+ is an arbitrary constant, and p1 : R+ → R is an adaptive gain tuned by

ṗ1 = D(ξ)(−ySv) (5)

where D : R+ → R+ is a dead zone given by

D(ξ) ,
{

1 (ξ > δ)
0 (ξ ≤ δ)

, ξ , y2
S + v2 (6)

where δ ∈ R+ is an arbitrary small constant, which specifies the radius of the residual
region of y and v, that is, the control performance. The details will be discussed later.

Next, the adaptive controller ΣC is designed as follows.

u = −p2 (yS + v) (7)

The adaptive feedback gain p2 : R+ → R+ is tuned by

ṗ2 = D(ξ) (yS + v)2 (8)

On the time period [0, tF ) where the sensor is healthy, i.e., yS(t) = y(t), t ∈ [0, tF ), the
overall system can be expressed by

ẏ = − (bp∗2 − a) y + hT z − bp∗2v + b∆2 (y + v)

ż = Fz + gy

v̇ = −bp∗2v + |v| + γ − (bp∗2 − p∗1 − a) y + hT z + b∆2 (y + v) − ∆1y (9)
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where ∆1 , p∗1 − p1 and ∆2 , p∗2 − p2, and p∗1 ∈ R+ and p∗2 ∈ R+ are some positive
constants to be estimated by p1 and p2 respectively.

From this result, we obtain the following lemma on the system stability.

Lemma 3.1. On the time period [0, tF ) where the sensor is healthy, all the signals, y, z
and v in the overall control system are bounded.

Proof: On the period, [0, tF ), we consider the following positive function S : R+ → R+:

S =
1

2

{
y2 + zT Pz + v2 + ∆2

1 + b∆2
2

}
(10)

where P ∈ R(n−1)×(n−1) is a positive definite matrix satisfying

F T P + PF = −2Q (11)

for arbitrarily given, positive definite, Q ∈ R(n−1)×(n−1). The detail of Q will be deter-
mined later.

From (9), the time derivative of S can be expressed as follows.

Ṡ = − (bp∗2 − a) y2 + hT zy − bp∗2vy + b∆2 (y + v) y − zT Qz + gT Pz − bp∗2v
2 + |v|v

+ γv − (bp∗2 − p∗1 − a) yv + hT zv + b∆2 (y + v) v − ∆1yv − ∆1ṗ1 − b∆2ṗ2 (12)

Here, we consider the constants p∗1 and p∗2 satisfying

bp∗2 − p∗1 − a > 0 (13)

Then, it follows that

Ṡ ≤ −1

2

(
p∗1 − a − 1 − ∥P ∥2

)
y2 −

(
λmin[Q] − ∥g∥2 − ∥h∥2

)
∥z∥2

−1

2

(
p∗1 − a − γ2

λ
− 3

)
v2 + λ + ∆1 (−yv − ṗ1) + ∆2

{
(y + v)2 − ṗ2

}
(14)

For analysis, we shall consider the two modes, that is, one is the case where ξ > δ
(Mode I), and the other is the case where ξ ≤ δ (Mode II).

Mode I: Because ξ > δ, we have D(ξ) = 1. Hence, from (5) and (8), it follows that

Ṡ ≤ − 1

2

(
p∗1 − a − 1 − ∥P ∥2

)
︸ ︷︷ ︸

α1

y2 −
(
λmin[Q] − ∥g∥2 − ∥h∥2

)︸ ︷︷ ︸
α2

∥z∥2

− 1

2

(
p∗1 − a − γ2

λ
− 3

)
︸ ︷︷ ︸

α3

v2 + λ (15)

where λ ∈ R+ is a constant introduced for analysis, which is not a designed parameter.
Now, we choose p∗1 and Q such that αi > 0, ∀i. Then, the time derivative of S can be

evaluated by

Ṡ ≤ −αξ + λ, α = min
i=1,2,3

{αi}. (16)

Therefore, by setting λ = δα, we can get Ṡ < 0 and

S < S(t0) (17)

where t0 ∈ R+ is the initial time which the system enters the Mode I.
Mode II: Because of the minimum-phase property of the plant ΣP , the state z can

be evaluated by

∥z∥ ≤ ∥z(t1)∥ exp {−α(t − t1)} +

√
δ∥g∥
λF

[1 − exp {−α(t − t1)}]



2804 M. TAKAHASHI

≤ max

{
∥z(t1)∥,

√
δ∥g∥
λF

}
(18)

where λF ∈ R+ is a positive constant determined by eigenvalues of the matrix F , and
t1 ∈ R+ is the initial time at which the system enters the Mode II.

In addition, clearly, in this mode, the adaptive gains p1 and p2 (also, the derivations,
∆1 and ∆2) do not change because D(ξ) = 0 (ξ ≤ δ). Hence, it is found that S does not
go beyond the initial value S(t1) or a constant which does not depend on time t.

From the discussions in the Modes I and II, we can conclude that S is bounded, and
so all the signals are bounded on the time period [0, tF ). �

3.2. Failure detection. From Lemma 3.1, because of boundedness of v, there is a finite
constant Γ ∈ R+ so that |v(t)| < Γ, t ∈ [0, tF ).

However, if the sensor ♯1 fails, then the detection filter ΣD can be expressed as

v̇ = |v| + γ ≥ γ > 0, t ≥ tF (19)

Hence, we have v ≥ γ(t − tF ) + v(tF ) , ṽ. Then, taking this unstable behavior of v into
consideration, we define the detection time tD as follows.

tD , min {t | |v(t)| ≥ Γ} (20)

3.3. Main results. The control performances of the self-repairing control system can be
summarized in the following theorem.

Theorem 3.1. Consider the self-repairing control system constructed by (1), (2), (4)-(8).
Then, the control system has the following properties.
(P1) If the sensor ♯1 fails, then the detection time tD exists, and satisfies

tD ≤ tF +
2Γ

γ
. (21)

(P2) All the signals, y, z and v, are bounded over [0,∞).
(P3) Regarding the output y, for arbitrarily given, small δ, we have

lim
t→∞

D(ξ)|y(t)| = 0 (22)

which means that y asymptotically enters a small region of arbitrarily given radius
√

δ.

Proof: As mentioned above, if the sensor failure (3) occurs, then there is a time tB > tF
such that |ṽ(tB)| = Γ. Because |v| > |ṽ|, the detection time tD exists so that

tD ≤ tB ≤ tF +
Γ + |v(tF )|

γ
(23)

Thus, (P1) is true.
To prove (P2), we shall consider the boundedness of all the signals on the anxious period

[tF , tD] where the failed sensor ♯1 is still activated. On this period, v is bounded because
v does not hit the threshold Γ. Hence, the control input u is also bounded. Furthermore,
for bounded u, the plant ΣP does not have a finite escape time. Therefore, all the signals
y, z and v, are bounded on [tF , tD].

After the detection time, i.e., t > tD, the sensor ♯1 is replaced, that is, the healthy
sensor ♯2 is activated. By the same discussion as Lemma 3.1, all the signals are bounded
on the period (tD,∞) where the sensor ♯2 is healthy. Thus, (P2) is true.

From (5) and (8), it follows that

p2 + 2p1 = p2(0) + 2p1(0) +

∫ t

0

D(ξ)
(
y2 + v2

)
dτ (24)
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From (P2) discussed above, p1 and p2 are bounded and so p2 + 2p1 is also bounded on
[0,∞). Therefore, we have ∫ ∞

0

D(ξ)
(
y2 + v2

)
dτ < ∞ (25)

Hence, it is found that limt→∞ D(ξ) (y2 + v2) = 0, which shows that (P3) holds.
Thus, the proof of Theorem 3.1 is completed. �

Remark 3.1. Regarding to selection of Γ, from (17), the largest candidate for Γ can

be chosen as Γ ≥
√

2S(t0) + δ. Fortunately, if it is assumed that the failure time tF is

sufficiently large (late), then one can choose a smaller candidate Γ such that Γ >
√

δ
because of the property (P3). In addition, the parameter γ is independent of the preceding
Γ. Hence, from (P1), for given Γ, γ can be chosen so large that the maximum detection
time can be shortened arbitrarily.

4. Numerical Example. This section shows the numerical simulation results to confirm
the effectiveness of the proposed method.

Consider the following unstable second order system:

ΣP : ẏ = y + u + z, y(0) = 1

ż = −z + y, z(0) = −0.5 (26)

Suppose that the failure time tF is set as

tF = 25.0 [s]

The design parameters are given by

γ = 1, Γ = 2, δ = 0.5, p1(0) = p2(0) = 0

Hence, the maximum detection time is estimated as follows.

tD ≤ tF +
2Γ

γ
= 29.0 [s] (27)

The simulation results are shown in Figures 1 and 2. In Figure 1, the actual output y
(top) and the absolute value of the filtered signal v (bottom) are shown. Figure 2 shows
the time response of the adaptive gains p1 and p2. From these results, it can be shown that
the unstable plant (26) can be stabilized before and after the failure time. The output y

remains the small region of radius
√

δ ≃ 0.7, and we can find y(50) ≃ −0.49. Also, the

0

2

-6
0 25 50 [s]

0 25 50 [s]
0

2

y

|v|

Failure detected

Figure 1. Simulation results: y (top) and |v| (bottom)
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Figure 2. Simulation results: adaptive gains p1 and p2

failed sensor can be successfully detected and replaced after the failure. The detection
time is tD ≃ 26.0 [s]. This is much faster than the maximum time 29.0 [s] estimated by
(27). Early and exact fault detection can be attained.

5. Concluding Remarks. This paper has presented the SRCS with the adaptive tuner
for plants with unknown parameters and sensor failures. The failure scenario considered
here, is supposed to be only the loss of effect (LOE), that is, the output of the sensor is
stuck at zero. Fortunately, according to [3], if the sign of the gain p1 does not change
during the maximum detection time 2Γ/γ, then the modification of the detection filter
may make it possible to find the stuck failures of more general types, i.e., y1(t) = φ,
t ≥ tF where φ ∈ R+ is the unknown stuck value. However, the concrete design method
for such a filter is not clarified theoretically. This problem is still left in the future works.
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