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Abstract. Identifying influential nodes is crucial for understanding and improving the
stability and robustness of complex software network. This paper presents a new method
based on LeaderRank information to identify top-k influential nodes in directed-weighted
complex software network. Firstly, the function and relationship of function calling or
dependency are mapped to a Directed function dependency network (DN). Secondly, a
so-called stem node connected with every other node by a bidirectional link is introduced
into the original network. Thirdly, an algorithm Constructing DWN (C-DWN) is used to
transform a DN into a Directed-Weighted function dependency network (DWN). Finally,
the Identifying Influential Node in Software Network (IIN-SN) algorithm is proposed to
identify influential nodes. Experimental results show that the proposed method is effective
for identifying influential nodes with the final score ranking following power-laws. The
top-k most influential nodes are the same and the final score (NS) of each node is a little
larger during the software evolution. What is more, we present that some factors such as
in-degree of nodes and influence of connected nodes are related to the influence of nodes.
Keywords: Software network, Influential nodes, Weighted network, LeaderRank

1. Introduction. In recent years, software network research has received much attention
in many fields, including degree distribution, average path length, preferential attachment,
and clustering coefficient. In particular, evaluating the influence of nodes is a critical
research task in software networks. Many mechanisms such as cascading and spreading
are highly affected by a tiny fraction of influential nodes [1-3]. If problems occur in these
nodes, software industry will suffer a great loss. So, identifying influential nodes is of
great theoretical and practical significance in software networks.

Many empirical studies have been greatly helpful for understanding the software sys-
tems. They have uncovered that software networks, extracted from various software
systems, follow power-law degree distributions, represent small-world properties, exhibit
community phenomena, and show some other complex behavior characteristics [4]. Vari-
ous centrality measures have been proposed over the years to rank the nodes of a graph
according to their topological importance [5]. Based on these works, research on influen-
tial nodes identification is emerging and has attracted wide-spread attention. Freeman
[6] adopted betweenness to measure the importance of nodes, and pointed out that nodes
with larger betweenness may be more important than others in software network. How-
ever, it is time-consuming to calculate the betweenness of each node. Ugander et al. [7]
found that the number of connected subgraphs between neighbor nodes has higher influ-
ence on the importance of nodes than absolute number of neighbor nodes. Chen et al. [8]
proposed a local centrality measure as a trade off between the low-relevant degree central-
ity and other time-consuming measures. However, it did not take nearest neighbors into
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consideration when identifying important nodes. Kitsak and Havlin [9] believed that the
position of a node in global network has a great impact on its importance and adopted
k-shell decomposition analysis to rank node importance, and the results outperform de-
gree and betweenness. Recently, Lv et al. [10] proposed the LeaderRank algorithm to
identify influential spreaders in directed and unweighted social networks. On the one
hand, the LeaderRank algorithm outperforms PageRank in identifying users who lead to
quick and wide spreading of useful items. On the other hand, the LeaderRank algorithm
performs high robustness to intentional attacks. These advantages make LeaderRank a
good method for ranking users as well as other ranking tasks.

As [11] discussed, scale-free networks guarantee the robustness of the global software
systems when a few random functions fail. However, failure of some key nodes with high
influence in software networks will be fatal fragility for functionality of the system [12].
To address the issue, this paper proposes a new method to identify influential nodes of
spreading failure in directed-weighted software network. We introduce a so-called stem
node connected with every other node by a bidirectional link. That is to say the method is
relevant to global structure. Nodes with more in-degrees get more weights from the stem
node to dig out influential nodes. Designers or developers should pay more attention to
nodes with high ability of spreading failures to improve the robustness of complex software
network.

The rest of this paper is organized as follows. In Section 2 some definitions are proposed
to describe the problem. Section 3 is a detailed description of our approach to identify
influential nodes. The experimental results on two open-source software are shown in
Section 4. Finally, the conclusions of the paper are presented in Section 5.

2. Problem Statement and Preliminaries. We use complex software networks to rep-
resent software systems according to the calling relationship between functions. Specif-
ically, all functions are modeled as nodes. When a node vi calls another node vj, the
edge vi → vj is added to the networks. Ultimately, the edges in the final network rep-
resent all calls of functions that appear in the executive process. The directed function
dependency network can be described as DN = {V,E,M}. V is a set of nodes in the
network, like {v1, v2, . . . , vi, . . .}. When function vi calls function vj, there would be a
directed edge < vi, vj > from the node vi pointing to the node vj. E is a set of directed
edges, {< v1, v2 >,< v2, v3 >, . . . , < vi, vj >, . . .}. M is an adjacency matrix storing the
adjacency relationship among all pairs of nodes.

In software networks, there are two types of node degrees: out-degree and in-degree.
Out-degree and in-degree represent the number of edges that start from the node vi and
end at the node vj, respectively. The out-degree of node vi indicates the number of nodes
called by node vi, whereas the in-degree of node vj indicates the number of nodes that
call the node vj. We use kin and kout to represent in-degree and out-degree of nodes,
respectively.

We consider a network of DN, nodes represent the software functions and the edges
represent the invoking relationship between the functions during the execution process.
We introduce a stem node which connects to every nodes through bidirectional links (see
Figure 1 for an illustration). Then, the network becomes strongly connected and consists
of V+1 nodes and E+2V edges and the weight is defined as the following.

In this paper, we introduce a weighted mechanism according to the adjacency relation-
ship among all pairs of nodes and the in-degree of normal nodes. (1) wij = 1 if normal
node vi points to normal vj and 0 otherwise; (2) for any normal node vi and the stem node
s, wsi = kin + 1 and wis = 1. For example, wab = 1, was = 1, wae = 0. After determining
the weight of every edge, the score from node vj to node vi is proportional to the weight
wji.
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Figure 1. An illustration of the stem node

The directed-weighted function dependency network can be described as DWN =
{V, E,W}. V is also a set of nodes in the network. E is a set of directed edges, too.
W is an adjacency matrix storing the weight of adjacency relationship.

Definition 2.1. RIS (Receive Influence Set). For a node vi, RIS is a set of nodes, such
as node vj which calls node vi directly, namely vj could receive information from vi and
thus vi will receive scores from vj.

RIS(vi) = {vj | vj → vi} , vi, vj ∈ V (1)

Definition 2.2. RIW (Receive Influence Weight). For a node i, RIW is weight sum that
gains the ability of influence. Obviously, the kout and the weight of directly connected edges
are important local indicators for a function to receive influence, and the kin is important
local indicator for a function to spread influence.

RIW (i) =
N+1∑
l=1

wil (2)

Definition 2.3. PNS (Present Node Score). PNS is defined to measure the influence of
the node vi at present. The PNS is given as follows:

Sv(t + 1) =
∑ 1

RIW (u)
Su(t) +

wsv

RIW (s)
Ss(t), u ∈ RIS(v) (3)

Obviously, in-degree is an important local indicator for a function’s influence in spread-
ing. Sv(t) is the score of node v at the tth step. Node u calls node v directly. The node
s represents the stem node. Nodes with different in-degrees get different scores from the
called nodes and the stem node. The NSs of all nodes are equal to the corresponding
PNSs when PNS of each normal node remains the same or nearly the same to PNS of
before time. The NS is used to quantify influence of nodes. Finally, we rank the NS of
these nodes and the nodes with larger final scores are considered to be more influential
in spreading.

3. Identifying Influential Nodes Based on LeaderRank. We propose a new method
based on LeaderRank information to identity influential nodes. This method is derived
from two different perspectives: the caller’s ability to accumulate failure and the callee’s
ability to spread failure. The influence of nodes is closely related to other nodes in network.
Suppose there is a calling relationship between u and v (u calls v). If v contains a failure,
then it may spread to node u. Similarly, node u may spread the failure to other nodes
if they call u. According to the calling or dependency relationships among the nodes in
software network, we can get a network of DN. In this section, we provide an algorithm
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Constructing DWN (C-DWN) that is used to get the weight of each directed edge and then
the DWN is constructed. Then we put forward an algorithm Identifying Influential Node
in Software Network (IIN-SN) to mine the top-k influential nodes in directed-weighted
function dependency network.

The stem node is related to the global topology structure of software network. The
weights of the edges express interacted influence of the nodes. We define weights according
to the adjacency relationship among all pairs of nodes and the in-degree of nodes. Then
according to the adjacency relationship among all normal pairs of nodes, weights of original
edges are given. Nodes with more degrees get more weights from the stem node to dig
out influential nodes. Finally for the edges of starting from the stem node, weights are
given. Algorithm C-DWN is detailed in Algorithm 1.

Algorithm 1 C-DWN: constructing a network of DWN

Input: Directed function dependency Network (DN)
Output: Directed-Weighted function dependency Network (DWN)
1: for (each vi ∈V)
2: if (< vsi, vej >∈ E and vi = vej), then inDegreeList(vi).add(vej)
3: end // inDegreeList(vi).size is equal to in-degree of node vi.
4: for (each value m(i, j) in M)
5: w(i, j) = m(i, j) //w(i, j) ∈V
6: end
7: for (new value in W)
8: w(i, s) = 1 and w(s, i) = inDegreeList(vi).size + 1
9: end

10: V and E are not changed in DWN
11: return DWN

To measure the influence of spreading failure, a novel algorithm IIN-SN is put forward
based on recursive technique. Primary principle of algorithm is to initialize the same
value to each normal node. All initial values of PNS are given. In the process of recursive
calculation, normal nodes and the stem node allocate their PNS to other nodes accord-
ing to correlation of nodes, so that, each node obtains corresponding node score. With
spreading of node measurement score, normal nodes and the stem node get PNS, and
PNS of each node is constantly updated with constant spreading. The result of PNS of
the previous iteration is multiplied by the matrix P again and continues to get new value
of PNS, and it achieves the goal of influence obtaining and spreading. When PNS of each
normal node is equal or similar to PNS of before time, the recursion terminates.

Algorithm 2 IIN-SN: calculate the score of each node

Input: directed-weighted adjacency matrix W
Output: final Node Score vector NS
1: for i = 1 : |V + 1| // |V + 1| is the number of rows in W.
2: RIW (i) = sum w(i, j)
3: end
4: for each p(i, j) ∈P
5: p(i, j) = w(i, j)/RIW (i)
6: end
7: initialize PNS
8: do {ONS = PNS and PNS∗ = P} while (|PNS − ONS| < temp)
9: NS = PNS

10: return NS
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In IIN-SN Algorithm 2, ONS is used to store the value of PNS, and temp is a tiny
convergent threshold. The process starts with the initialization of PNS where the score
of the normal node is 1 and the stem node is 0, and the process will soon converge to a
unique steady state. Finally, we rank the NS of these normal nodes and mine the top-k
influential nodes in the software network.

4. Experimental Analysis. In order to verify the effectiveness of the method for identi-
fying influential nodes, and to research the changes of influential nodes that occur during
the evolution of software systems, in this section, two open-source software Cflow and Tar
will be tested for empirical analysis, which are available from the open source software
library: Http://sourceforge.net.

The score of nodes reflects the influential degree of nodes in global network. Figure 2
and Figure 3 show the score ranking of nodes of the four versions under investigation. As
mentioned previously, the Cflow and Tar are studied separately in our research. Here,
Figure 2 and Figure 3 include the results of the Cflow and Tar, respectively. Note that
the vertical axis is the score of nodes and the horizontal axis indicates the ranking of the
nodes under investigation.

Figure 2. NS rank of Cflow Figure 3. NS rank of Tar

We find that, for the Cflow and Tar, the versions have similar variation tendency
and each of new versions has a slightly higher one during the software evolution. It
indicates that the versions do not change too much considering the system’s stability and
the structure of the two software systems is a little more complex during the software
evolution.

We also find that, slope of curve changes greatly at the beginning, and then decreases
gradually. For further analysis of these characteristics, we specifically research a version
of the Cflow and Tar, respectively in Figure 4. We show the score ranking of nodes for
tar-1.27 and cflow-1.2, respectively. Interestingly, the distributions roughly follow power-
laws. A few nodes tend to have high influence, but very low influence for most of the
nodes. Scale-free distribution is a common property in complex networks. For example,
the cumulative in-degree distribution also obeys the power law.

The influential functions working well are vital to software systems. In Table 1 and
Table 2, we present the top rank of the nodes for different versions of the software of Tar
and Cflow. From Table 1 and Table 2, we find that nodes of high score and the rank
of nodes are almost unchanged in the two softwares. The two functions to chars and
nexttoken have much higher NS than other functions in each of the versions, so we can
predict that the two functions have also high influence in update versions in the future,
respectively. We also find that the values of most functions increase gradually, which
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(a) NS rank of tar-1.27 (b) NS rank of cflow-1.2

Figure 4. NS rank of the Tar version and the Cflow version

Table 1. Node ranking for each version of Tar

tar-1.24 tar-1.25 tar-1.26 tar-1.27
function name rank value rank value rank value rank value
to chars 1 1.7588 1 1.7588 1 1.7994 1 1.8099
to octal 2 1.5896 2 1.5896 2 1.5965 2 1.6163
assign string 3 1.4246 3 1.4346 3 1.4340 3 1.4817
tar copy str 4 1.2408 4 1.2408 4 1.2464 4 1.2516
flush archive 5 1.1397 5 1.1397 5 1.1423 5 1.1561
find next block 6 1.0646 6 1.0646 6 1.0641 6 1.0769
set next block after 7 1.0634 7 1.0634 7 1.0626 7 1.0748
tar stat destroy 8 1.0203 8 1.0233 8 1.0250 8 1.0265
yy flush write 9 0.9300 9 0.9300 15 0.7760 14 0.9443
tar stat close 11 0.9090 10 0.9094 13 0.8300 15 0.8842

Table 2. Node ranking for each version of Cflow

cflow-1.1 cflow-1.2 cflow-1.3 cflow-1.4
function name rank value rank value rank value rank value
nexttoken 1 2.2190 1 2.2280 1 2.1688 1 2.1948
gnu output handler 2 2.0306 2 2.0387 2 1.9843 2 1.9821
print symbol 3 1.5230 3 1.5290 4 1.4883 4 1.4960
putback 4 1.4847 4 1.4907 5 1.4508 5 1.4682
lookup 5 1.4342 5 1.4346 6 1.3720 6 1.3719
hash symbol hasher 6 1.3536 7 1.3509 9 1.2202 8 1.2202
hash symbol compare 7 1.3536 8 1.3509 10 1.2202 9 1.2459
yy load buffer state 8 1.3484 6 1.3539 7 1.3180 7 1.2771
include symbol 9 1.2843 9 1.2894 8 1.2550 10 1.1619
linked list append 11 1.2112 10 1.2160 3 1.5060 3 1.5240

means that the invoking relationships are more complex and the influences are much
higher during the software evolution.
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As mentioned previously, the cumulative in-degree distribution also obeys the power
law. So we compare the top-10 functions in our method with In-Degree using tar-1.25 and
cflow-1.4 in Table 3 to find the internal contact between them. We found that, for most of
nodes in each version, the larger in-degree is, the larger NS is, and vice versa. Usually, the
nodes with large in-degree represent simple, fundamental functions in software systems,
which are frequently reused and not necessary to be dependent on other classes. And
the nodes have significant external responsibility and high influence. So the influence of
nodes has approximately positive correlation with the in-degree.

Table 3. The comparison of the functions ranking

top-10 functions in tar-1.25 top-10 functions in cflow-1.4
function name NS In-Degree function name NS In-Degree
to chars 1 1 nexttoken 1 1
to octal 2 20 gnu output handler 2 2
assign string 3 2 linked list append 3 3
tar copy str 4 3 print symbol 4 25
flush archive 5 10 putback 5 2
find next block 6 3 lookup 6 3
set next block after 7 3 yy load buffer state 7 7
tar stat destroy 8 4 hash symbol hasher 8 10
yy flush write 9 20 hash symbol compare 9 12
tar stat close 10 10 include symbol 10 12

We also note that, although the positive correlation is clear, there are a few special
points. For the version tar-1.25, there is one special function in Table 3. NS is very high
but in-degree is low for the to octal function. We analyze the call graph of kernel version
tar-1.25 and find that function to chars calls the function to octal. As a result, to octal
receives score from to chars. As a result of the same reason, there exist special points
such as the function print symbol in the version cflow-1.4, as seen in Table 3. So a node’s
caller is of high influence, and this node will be highly influential as well.

In conclusion, influential nodes are not only related to the in-degree but also associated
with the influence of the connected nodes.

5. Conclusions. In this paper, a new method of identifying influential nodes in complex
software network was proposed based on LeaderRank information. Not only were the
adjacency relationship among all pairs of nodes considered, but also the in-degree of nodes
in a weighted network. The algorithm C-DWN was presented to transform a network of
DN into a DWN, and IIN-SN algorithm was used to calculate the NS of each node in
the network of DWN. The experimental results on two open-source software show that
our method can well identify influential nodes. This paper not only finds some helpful
factors to influence of nodes but also enriches the ranking method of complex software
networks. Though C-DWN and IIN-SN are already effective algorithms, extensions may
lead to further improvement. For instance, the role of the stem node would be more
prominent if weights are set on the times of call to each node, according to its significance
or other criteria.

Acknowledgment. This work is supported by the National Natural Science Foundation
of China under Grant No. 6157220, No. 61472341 and the Natural Science Foundation
of Hebei Province, P. R. China, under Grant No. F2013203324, No. F2014203152 and
No. F2015203326. The authors are grateful to the valuable comments and suggestions of
the reviewers.



2844 G. HUANG, J. LIU, X. CHEN AND J. REN

REFERENCES

[1] G. Barach and M. Tuchman, Distributions of betweenness in cascades of overload failure in random
regular networks, APS Meeting Abstracts, 2014.

[2] Y. He and X. Zhu, Statistics and developing model of Chinese skyway network, International Journal
of Modern Physics B, pp.2595-2598, 2012.

[3] Q. Wu and X. Fu, Immunization and epidemic threshold of an SIS model in complex networks,
Physica A Statistical Mechanics, p.444, 2016.

[4] P. Hosek and C. Cadar, Safe software updates via multi-version execution, Proc. of the International
Conference on Software Engineering, pp.612-621, 2013.

[5] P. Bhattacharya, M. Iliofotou, I. Neamtiu et al., Graph-based analysis and prediction for software
evolution, Proc of the 34th International Conference on Software Engineering, pp.419-429, 2012.

[6] L. C. Freeman, Centrality in social networks, Social Networks, vol.1, no.3, pp.215-239, 2015.
[7] J. Ugander, L. Backstrom and C. Marlow, Structural diversity in social contagion, Proc. of the

National Academy of Sciences, vol.109, no.16, pp.5962-5966, 2012.
[8] D. Chen, L. Lv and M. S. Shang, Identifying influential nodes in complex networks, Physica A:

Statistical Mechanics and Its Applications, vol.391, no.4, pp.1777-1787, 2012.
[9] M. Kitsak and S. Havlin, Identification of influential spreaders in complex networks, Nature Physics,

vol.6, no.11, pp.888-893, 2010.
[10] L. Lv, Y. C. Zhang and C. H. Yeung, Leaders in social networks, the delicious case, PloS One, vol.6,

no.6, 2011.
[11] R. Albert, H. Jeong and A. L. Barabási, Error and attack tolerance of complex networks, Nature,

vol.406, no.6794, pp.378-382, 2000.
[12] L. Wang, P. Yu, Z. Wang and Q. Ye, On the evolution of Linux kernels, Journal of Software, vol.25,

no.5, 2013.


