
ICIC Express Letters ICIC International c⃝2016 ISSN 1881-803X
Volume 10, Number 12, December 2016 pp. 2853–2859

EVENT-TRIGGERED Q-LEARNING FOR MULTI-AGENT SYSTEMS

Wenxu Zhang, Lei Ma and Xiaodong Wang

School of Electrical Engineering
Southwest Jiaotong University

No. 111, 1st Northern Section, Second Ring Road, Chengdu 610031, P. R. China
wenxu zhang@163.com

Received April 2016; accepted July 2016

Abstract. This paper investigates an event-triggered problem for multi-agent systems
in reinforcement learning. An event-triggered multi-agent Q-learning algorithm, called
ET-MAQL is proposed. Most existing multi-agent reinforcement learning algorithms have
high communication cost and computational complexity. To address these problems, we
focus on event-triggered multi-agents at the learning strategy layer. During interaction
with the environment, the agents trigger communication and learning using the variation
rate of observed information. Thus, there is no need for agents to communicate or learn
in real time or periodically, resulting in fewer data transmissions. Meanwhile, agents do
not need to perform trial and error or iterations at each time instance, thereby reducing
resource consumption. Finally, the convergence of the proposed algorithm is analysed.
Simulation results show feasibility and validity of the proposed algorithm.
Keywords: Event-triggered, Multi-agent system, Q-learning, Decentralized partially
observable Markov Decision Processes (DEC-POMDPs)

1. Introduction. In recent years, event-triggered methods receive more and more at-
tention from multi-agents [1, 2, 3]. The ability of agents to update status periodically
using measurement errors reduces transmissions and computational complexity. The use
of event-triggered strategies for collaboration in multi-agent systems was pioneered in [4]
and later extended to non-linear adaptive dynamic planning [5, 6, 7]. However, most
event-triggered reinforcement learning is currently focused on how to design multi-agent
controllers based on measurement error [8, 9]. Little attention is paid to their combination
with the strategy layer of multi-agent learning. The learning process has two problems
because each agent carries resource-limited communication devices and microprocessors.
First, information interaction between agents consumes large network bandwidth. Sec-
ond, trial and error and iterative processes are computationally intensive. In order to
solve these problems, this paper focuses on the learning strategy layer by using the ad-
vantage of event-triggered, and a distributed Markov model is used to propose a novel
event-triggered multi-agent Q-learning algorithm. Unlike traditional multi-agent learning
algorithms, there is no need for agents to communicate or learn in real time in learning
process by self-triggering and joint-triggering. The optimal strategy of agents is calculated
while reducing resource consumption and data transmissions. Finally, the convergence of
proposed algorithm is analysed.

2. Problem Statement and Preliminaries.

2.1. Distributed Markov model. The decentralized partially observable Markov Deci-
sion Processes (DEC-POMDPs) problem is concerned with the decision process of a group
of agents. It is a tuple: ⟨I, S,Ai, P, Ωi, O, R, b0⟩, where I is a finite set of the agents, S is a
finite set of states with designated initial state distribution b0, Ai is a finite set of actions,
P : S × A⃗ → △S is a Markovian transition function, P

(
s
′|s, a⃗

)
denotes the probability

2853

2854 W. ZHANG, L. MA AND X. WANG

of a transition from state s to state s
′
, Ωi is a finite set of observations, Ω⃗ = ⊗i∈IΩi is the

set of joint observations, O : A⃗ × S → △Ω⃗ is an observation function, O (o⃗|⃗a, s) denotes
the probability of observing joint observation o⃗ given that the joint action a⃗ is taken and
leads to state s

′
, and R : A⃗× S → R is a reward function.

2.2. Q-Learning. Q-Learning [10] is a model-independent method of reinforcement lear-
ning. The basic form of Q-learning is as follows: Q∗(s, a) = R (s, a) + γΣs

′∈SP
(
s, a, s

′)
max Q∗ (

s
′
, a

′)
where Q∗(s, a) represents sum of the discount rewards obtained with action

a under state s, γ stands for the discount factor, P
(
s, a, s

′)
is the probability function.

The main problem with Q-learning is that agents need to find the optimal strategy through
trial and error, which consumes significant computational resources.

3. Design of Triggering Rules.

3.1. Design of self-triggering. In DEC-POMDP, each agent obtains local information
through independent observation and then broadcasts this to the whole team. After the
observation at time t, each agent triggers itself to determine whether it should broadcast
its observations based on the rate of variation. For agent i, the rate of variation from
the observation at t and t − 1, is defined as: ei(t) = |oi(t)− oi(t− 1)| /oi(t − 1), where
oi(t) is the observed value at t. Let 0 < C < 1 be a self-triggering threshold. Agent i
determines whether to communicate based on the variation rate of observation. There is
no need for agents to communicate at every moment in the self-triggering process; this
reduces communication overhead.

3.2. Design of joint-triggering. Joint triggering is performed on the team of agents,
taking account of the variation of a joint observation O(t) = (O1(t), O2(t), . . . , On(t)) at
time t. The variation rate of joint observations at t − 1 and t for the team is defined
as: E(t) = (e1(t), e2(t), . . . , en(t)). The variation is used to compute the bias error of two
moments. Let F (t) = Σn

i=1ei(t)/n be the mathematical expected rate of joint observations,
we compute the variance as:

∑n
1 = [ei(t)− F (t)]2 ·p, where p = 1/n is the distribution law

of ei(t), let G(t) = |G(t)− F (t)| /F (t). Let 0 < H < 1 be the joint trigger threshold of
the team. When G(t) is above H, the status of the team has changed rapidly, highlighting
the need for Q-value lookup and iterations to compute a new joint strategy. Otherwise,
agents will continue to use the joint strategy from the previous moment.

Remark 3.1. Difference between self-trigger and joint-trigger.
First, self-trigger is enabled by the variation rate of independent observations made by

the agents, and the triggered action is to broadcast communication to reduce consumption
of communication resources. Joint-trigger takes account of the variation rate of joint
observations made by the team of agents, and the triggered action is to compute a joint
strategy to reduce the consumption of resources required for calculations.

Second, when the observation variations for an individual agent are larger than the
threshold, the variation of joint observations made by the team of agents may not neces-
sarily be over the threshold. When the overall environment changes, the observation of
each agent changes correspondingly. However, it is possible for the joint strategy to re-
main unchanged, as the relative variation rates of all agents are almost the same, making
it unnecessary to drive the agents.

ICIC EXPRESS LETTERS, VOL.10, NO.12, 2016 2855

4. Event-triggered Q-Learning.

4.1. Proposed algorithm. An event-triggered DEC-POMDP is composed by a tuple
⟨I, S,Ai, P, Ωi, O, R, b0, e⟩ where e denotes the event trigger function. When the trigger
function of the agent is above the threshold, the agent will be triggered and state transition
will occur based on the transition function P . As shown in Figure 1, unlike classical Q-
learning, the agent decides whether to trigger according to the trigger function e, and
then executes an action to influence the environment.

Figure 1. The frame of reinforcement learning with event-triggered

The key to Q-learning is to find a strategy that enables the team of agents to maximize
the reward. For all states, status-joint action of the optimal strategies has the same
optimal function for (s, a⃗), which we denote as Q∗. Solving DEC-POMDPs for state s0

can be seen as finding a policy q which maximizes the expected cumulative reward Q:

Q (s, q⃗) = R (s, a⃗) + Σs
′∈SΣo⃗∈Ω⃗P

(
s
′|s, a⃗

)
O

(
o⃗|s′

, a⃗
)

Q
(
s
′
, q⃗o⃗

)
(1)

where R (s, a⃗) is the reward function, a⃗ is a joint action from strategy q⃗, O
(
o⃗|s′

, a⃗
)

denotes probability of the observation after state s and reaching state s
′
. For ET-MAQL,

the Q value does not need to be computed iteratively unless the agents are driven. Here,
we define the Q function as the accumulation of discounted reinforcement values while
triggering event e at st, executing the joint action a⃗t. That is,

Qt+1 (st, a⃗, e) = γt ·max
a⃗t

{Qt+1 (st, a⃗, e) |⃗at ∈ A} (2)

Given any strategy and the next state, the relationship between values of s and the
next state can be expressed as:

Q∗ = E {rt ·Qt+1 (st, a⃗, e) |st = s, a⃗ = a⃗, et = e}
=

∑
s′ P

a⃗
ss′

[
Ra⃗

ss′
+ γ ·maxa⃗ Q∗ (

s
′
, a⃗, e

)] (3)

If the agent is not triggered, we directly use the previous Q value as the current Q
value.

∆Q (st, a⃗t, e) = rt + γ max
a⃗∈A

Qt (st+1, a⃗t, e)−Q (st, a⃗t, e) (4)

Q (st, a⃗t, e) = Q (st, a⃗t, e) + αQ (st, a⃗t, e)

= Q (st, a⃗t, e) + α

[
rt + γ max

a⃗∈A
Qt (st+1, a⃗t, e)−Qt (st+1, a⃗t, e)

]
(5)

Equations (4) and (5) show iterations of traditional Q-learning. Similarly, in event-
triggered Q-learning, the Q value iteration can be expressed as:

Q (st, a⃗t, e) = (1− α) Qt−k (st, a⃗t, e) + α

[
rt + γ max

a⃗∈A
Qt (st+1, a⃗t, e)

]
(6)

where k is the difference between the previous and current time.

2856 W. ZHANG, L. MA AND X. WANG

Algorithm 1 Event-triggered Multi-agent Q-Learning

1: procedure
2: Input: b0, α, γ, C, H
3: foreach i ∈ I
4: For t− 1 to T − 1 do
5: ot

i // receive the local observation from environment
6: compare the ot−1

i

7: if self-triggering then
8: a⃗← ot

i // broadcast
9: if joint-triggering then

10: bt (ht) // calculate the joint belief states by ht

11: Qt ← (s, a⃗t) // lookup table
12: a⃗t = (ai, . . . , an) // the joint action
13: q⃗t (⃗at) // the joint strategy
14: update Q // learning
15: else return to q⃗t−1 // the previous strategy
16: else return to q⃗t−1

17: return q // the optimal strategy
18: end procedure

4.2. Analysis of algorithm convergence. In ET-MAQL, agents do not evaluate the
strategy unless their observations change. Consider that at t, the agent is not triggered by
an event. Then, the agent will directly use the iterated Q value of the previous moment,
rather than iterating in Equation (6). Hence, in the process of finding the optimal strategy,
instead of iterating at each moment, the number of Q value iterations is reduced by only
iterating when it is triggered by events.

π0 → Qπ0 → π1 → Qπ1 → π2 → Qπ2 → π3 → Qπ3 → · · ·π∗ (7)

π0 → Qπ0 → π1 → Qπ1 → π2 → Qπ2 → π2 → Qπ2 → · · ·π∗ (8)

As shown in Equation (7), the Q value converges gradually from the initial value to the
optimal value Q∗. The iteration process from t − 1 to t brings the Q value closer to the
optimal value. As Equation (8) shows, the Q value at t is not iterated when agents are
not driven, and it directly uses the Q value of t, reducing the computational resource of
Q value iterations.

Lemma 4.1. Convergence theorem: Let χ be an arbitrary set and assume that B is the
space of bounded functions over χ, B (χ) i.e., T : B (χ)→ B (χ). Let v∗ be a fixed point
of T and let τ = (T0, T1, · · ·) approximate T at v∗ and for initial values from F0 (v∗), and
assume that F0 is invariant under τ . Let V0 ∈ F0 (v∗), and define Vt+1 = Tt (Vt, Vt). If
there exist random functions 0 ≤ Ft (x) ≤ 1 and 0 ≤ Gt (x) ≤ 1 satisfying the conditions
below w.p.1, then Vt converges to v∗ w.p.1 in the norm of b (χ):

(1). for all U1 and U2 ∈ F0, and x ∈ χ, |Tt (Ut, v
∗) (x)− Tt (U, V) (x)| ≤ Gt (x) |U1 (x)

−U2 (x)|;
(2). for all U and V ∈ F0, and all x ∈ χ, |Tt (Ut, v

∗) (x)− Tt (U, V) (x)| ≤ Ft (x) (∥v∗−
V ∥+ λt), where λt → 0 w.p.1. as t→∞;

(3). for all k > 0,
∏n

t+k Gt (x) in x n→∞; and,
(4). there exists 0 ≤ γ < 1 such that for all x ∈ X and large enough t, Ft (x) ≤

(1−Gt (x)).

Corollary 4.1. The convergence is not influenced by ET-MAQL.

ICIC EXPRESS LETTERS, VOL.10, NO.12, 2016 2857

Proof: In the ET-MAQL, let T = (T0, T1, . . . Tk, Tk+1 = Tk, Tt, . . .) be an action se-
quence, which is a mapping from current state to next state after an action is oper-
ated, where (. . . Tk+1, Tk, . . .) means the Tk+1th action equals Tkth action. The iterative
process is ft+2 = Tk+1 (ft+1, ft+1) = Tk (ft, ft). Let V, U0, V0 ∈ Bχ, Ut+1 = Tt (Ut, V),
Vt+1 = Tt (Vt, V

∗), and δt (x) = |Ut (x)− Vt (x)|. According to convergence theorem, we
have:

δt+1 = |Ut+1 (x)− Vt+1 (x)|
= |Tt (Ut, v

∗) (x)− Tt (Vt, Vt) (x)|
≤ |Tt (Ut, v

∗) (x)− Tt (Vt, v
∗) (x)|+ |Tt (Vt, v

∗) (x)− Tt (Vt, Vt) (x)|
= Gt (x) δt (x) + Ft (∥v∗ − Vt∥+ λt)

≤ Gt (x) δt (x) + Ft (∥v∗ − Vt∥+ ∥Ut − Vt∥+ λt)

= Gt (x) δt (x) + Ft (x) ∥v∗ − Vt∥+ λt

(9)

Equation (9) meets conditions (1) and (2), although the action sequence T contains
same actions Tk and Tk+1, it still meets the Lipschitz condition. So the convergence is not
influenced.

5. Simulation Results. This section studies the multi-agent coverage problem. Two
agents are randomly placed in a 10× 10 grid, as shown in Figure 2. Each agent has four
movement options (forward, backward, left, and right) and it can observe two cells (shad-
owed part) along each of the four directions. The observed cell is labeled “passed”, “not
passed”, and “obstacle”, the probability that the observation is true is 0.9 for each agent,
and their corresponding reward are 30, −5 and −10. The boundary of grid is regarded
as obstacle. Each agent can broadcast messages. The task of agents is to traverse (i.e.,
cover) all cells as soon as possible. This task is considered to be accomplished successfully
when over 90 of the cells are passed within 1000 steps; otherwise, the task is failure. The
learning rate is 0.5, and the discount factor is 0.2. The self-triggering C = 0.3. The
joint-triggering function H = 0.05, 0.1, 0.2, 0.3, respectively.

In Figure 3, the success rate of two algorithms is basically accorded, but the convergence
speed of ET-MAQL is slower, because the Q iterative number is reduced. And we can see
the relationship between joint triggered function and convergence speed of ET-MAQL.

Figure 2. The coverage problem of multi-agent

2858 W. ZHANG, L. MA AND X. WANG

Figure 3. The success rate of event-triggered MAQL and classical MAQL

Table 1. The number of traverse of classical MAQL and ET-MAQL with
H = 0.1

Steps Classical-MAQL ET-MAQL Reduced

50 ≈ 229 × 50 ≈ 229 × 41 ≈ 232.2

100 ≈ 229 × 100 ≈ 229 × 77 ≈ 233.5

200 ≈ 229 × 200 ≈ 229 × 151 ≈ 234.6

300 ≈ 229 × 300 ≈ 229 × 218 ≈ 235.4

500 ≈ 229 × 500 ≈ 229 × 376 ≈ 236

The smaller threshold H, the lower convergence speed, because the iterative number is
reduced.

In the process of learning, the agent team has to traverse all (38 × 4)
2 ≈ 229 Q value

to find an optimal one. Table 1 shows that the number of traverse is greatly reduced
by ET-MAQL. The above results indicate that, as compared with the classical MAQL,
ET-MAQL obtains the same optimal strategy while effectively saving computing resource.

6. Conclusion and Future Work. This paper proposed an event-triggered multi-agent
Q-learning algorithm, called ET-MAQL. During interaction with the environment, the
agents trigger communication and learning using the variation rate of observed informa-
tion. Thus, there is no need for agents to communicate or learn in real time or periodically,
thereby reducing resource consumption and data transmissions. Future work will include
extending the proposed algorithm to hierarchical reinforcement learning, and analyze the
relationships between ET-MAQL and the computational complexity.

REFERENCES

[1] W. Zhu, Z. P. Jiang and G. Feng, Event-based consensus of multi-agent systems with general linear
models, Automatica, vol.50, no.2, pp.552-558, 2014.

[2] D. Ding, Z. Wang, B. Shen et al., Event-triggered consensus control for discrete-time stochastic
multi-agent systems: Input-to-state stability in probability, Automatica, vol.62, pp.284-291, 2015.

[3] D. Yang, W. Ren, X. Liu et al., Decentralized event-triggered consensus for linear multi-agent systems
under general directed graphs, Automatica, vol.69, pp.242-249, 2016.

[4] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Automatic
Control, vol.52, no.9 pp.1680-1685, 2007.

[5] H. J. Wang and Q. Q. Xue, Event-triggered guaranteed cost control for a class of nonlinear networked
control systems, ICIC Express Letters, Part B: Applications, vol.6, no.6, pp.1727-1732, 2015.

ICIC EXPRESS LETTERS, VOL.10, NO.12, 2016 2859

[6] S. S. Kia, J. Cortés and S. Mart́ınez, Distributed event-triggered communication for dynamic average
consensus in networked systems, Automatica, vol.59, pp.112-119, 2015.

[7] A. Wang and T. Dong, Event-triggered synchronization strategy for complex dynamical networks
with the Markovian switching topologies, Neural Networks, vol.59, pp.52-57, 2016.

[8] X. Zhong, Z. Ni, H. He et al., Event-triggered reinforcement learning approach for unknown nonlinear
continuous-time system, Proc. of International Joint Conference on Neural Networks, Beijing, China,
pp.3677-3684, 2014.

[9] H. Xu and S. Jagannathan, Near optimal event-triggered control of nonlinear continuous-time sys-
tems using input and output data, Proc. of the 11th IEEE World Congress on Intelligent Control
and Automation, Shenyang, China, pp.1799-1804, 2014.

[10] C. Watkins and P. Dayan, Distributed event-triggered control for multi-agent systems, Machine
Learning, vol.8, no.3, pp.279-292, 1992.

[11] C. Szepesvari and M. L. Littman, A unified analysis of value-function-based reinforcement-learning
algorithms, Neural Computation, vol.11, no.8, pp.2017-2060, 1999.

