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Abstract. Kernel Support Vector Machine (KSVM) is a common machine learning
model for both classification and regression tasks. However, the computational cost for
training a KSVM is high, especially for large datasets, leading to the failure of its applica-
tion in big data analysis, which is a hot topic in recent years. In this paper, we proposed a
new method for training KSVM effectively by making use of a divide-and-conquer mech-
anism. The method adopts a buffered k-D tree to divide data samples in a training set
into different leaf structures together with buffer cells. The original problem is divided
into many small but independent sub-problems which can be solved effectively by com-
mon KSVM classifiers. A min-max expansion strategy is used for expressing each buffer
cell as a single vector. The KSVM classifiers are updated according to the data samples
buffered in k-D tree. We evaluate the proposed method on two benchmark datasets and
compare to two state-of-the-art training methods implemented in LibSVM to show its
effectiveness.
Keywords: Kernel support vector machine, Big data mining, Buffer k-D tree, Machine
learning

1. Introduction. In data mining and machine learning, the Support Vector Machine
(SVM) model is a common model for both classification and regression tasks [1]. By using
the kernel trick [2], a kernel function defined in sample space can be plugged into an
SVM model reflecting inner product of each sample pair, namely Kernel Support Vector
Machine (KSVM). A good kernel function can induce a space with high or event infinity
dimensions where data samples belonging to different concept classes can be separated
linearly. Currently big datasets with millions of samples are common in analysis tasks,
and people are interested in information and knowledge implied in big datasets, which are
valuable for decision making, planning, and other supports for management [3]. Though
data mining and machine learning algorithms are well studied and many application sys-
tems have been developed, most of them cannot process huge datasets effectively. Hence
many methods in traditional machine learning have been adjusted to meet the require-
ments of big data environment. The main ideas of these studies fall into two categories.
On the one hand, some approximations have been made to downgrade the time complex-
ity of current learning methods so as to be able to process big datasets. For example, the
methods proposed in [4] fall into this category. And on the other hand, new methods and
models are derived based on current successful with some well designed strategies.

In this paper, we go the second way as mentioned above to design our method. The
motivation of this work is initialized with the observation of the difficulty of combining
individual learners trained by partitions of a big dataset. In many previous works based
on dataset partition, there is a strong assumption, i.e., the samples in all partitions of
the training dataset are independent identical distribution (i.i.d). Hence the strategies of
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ensemble learning or weighted combination can work well. However, the i.i.d assumption
may be not true in many cases, leading to the failure of partition training. We attempt to
tackle this problem in the partition framework by buffering some important information
of each partition which keeps the correlation between partitions in a unified model. The
correlation kept in our tree structure makes it possible to combine partitions according
to their entropy information, which in fact relaxes the i.i.d assumption. We propose to
apply a Kernel Support Vector Machine (KSVM) as the main model of this study, which
is trained with the partitioned training big dataset. At the same time, for each part of
the training dataset, a buffered k-D tree is built to store some abstract information of
the part which would be used for modeling the correlation between different parts in the
model combination stage.

The parameters of a KSVM, i.e., α and b can be learned through Sequential Minimal
Optimization algorithm (SMO) [5], a famous iterative learning method for KSVM train-
ing. However, when the training dataset size N is large, the SMO method is difficult to
converge in reasonable time. A key concept of SVM model is that the learned classifi-
cation hyperplane or the curve is determined by a small number of data points, namely
Support Vectors (SV), which is guaranteed by the empirical risk minimization theory.
Mathematically, the hyper parameter αs should contain a large number of zeros and the
remainder are SVs. It can be seen that if a large dataset is generated through a relatively
simple function (with low VC dimensions), there are only a few SVs of its classification
or regression KSVM. For buffered k-D tree, it is a tree-based model initially designed for
classification. Different from the famous decision tree, buffered k-D tree is a balanced
binary tree. Any inner node of a k-D tree represents a split of the original dataset to two
disjoint subsets. k nearest neighbor search can be performed effectively on a k-D tree.
For our method, we use a trained k-D tree and add a buffer region to store some hits of
each part of the training dataset, which can be used for the combination of the trained
KSVM models.

This paper is structured as follows. Section 2 proposes the main method of this paper.
We first give a formal definition of the problem to be solved. Then present the buffered k-
D tree construction and training of KSVM learners, as well as the combination strategy of
individual learners. In Section 3 we report the evaluation results of the proposed model on
some benchmark data sets with comparison to two state-of-the-art methods. And finally
we conclude the paper in Section 4.

2. Training KSVM with Buffered k-D Tree on Big Dataset.

2.1. Problem definition. Before going further, we give a formal definition of the prob-
lem to be solved. We confine the problem to be classification in this study. Suppose there
is a labeled dataset with huge amounts of samples: D = {(x, y)|x ∈ X, y ∈ {−1, +1}},
where X ⊆ Rd. Only binary classification is concerned. And we should note that the
proposed method can apply to multiple-class dataset by using a one-vs-rest strategy. The
goal is to learn a classifier h : X → {−1, +1} such that the loss of h on all future unseen
test samples is minimized. Since the real loss of all future unseen data samples cannot be
precisely evaluated, in this study we use the minimal loss on training dataset as the op-
timization goal instead. Meanwhile, a zero-one loss function is used for the classification
accuracy evaluation, as shown in Equation (1):

Loss01(h,D) =
1

|D|

|D|∑
i=1

σ(h(xi), yi) (1)

where h stands for a classifier trained with D and σ is a zero-one loss function evaluating
the difference between the output of h(xi) and the ground truth value yi. For brevity,
we denote H = {h1, h2, · · · , hm} to be m sub-learners trained by a KSVM-based learner
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which is trained as the main learner by combination several learners with some important
hits stored in a k-D tree. The final model can be expressed as the following:

h∗ = Comb(T, H) (2)

where Comb is a procedure that adjusts all hi in H through a weighted combination
guided by a buffered k-D tree and T stands for a vector of combination weights.

2.2. Building buffered k-D tree. A buffered k-D tree locates at the core of our meth-
ods. We first give a formal definition together with a tree building algorithm. Generally
speaking, a buffered k-D tree is a k-D tree associated with a set of buffers. As shown in
Figure 1, a buffered k-D tree is composed of the following components: a balanced binary
tree, a set of leaves, buffer structure, buffer processor and input queues.

Figure 1. A sample buffered k-D tree

The components of a buffered k-D tree are working together in the following way. Data
samples from training dataset are fed into the buffered k-D tree through the input queue
component. The nodes of balanced binary tree represent median values of all dimensions
of the training data set. For an inner node, its left branch represents the value is smaller
than the corresponding median value, and its right branch otherwise. The balanced
binary tree structure is stored in an array at a compressing way. The root node is stored
in position 0. The left child of the node stored in position i is stored in position 2 ∗ i
and the right child is in position 2 ∗ i + 1. The leaf structure is a set of queues, each
of which contains the training samples satisfied with the conditions set by the k-D tree.
The buffered structure is designed for compressing the data samples in the queue of each
leaf. Here the intuition is to generate some signature of data samples belonging to each
leaf. A min-max expansion method is used for the compression. For each attribute, the
minimal and maximal values among all data samples containing in this leaf are recorded
and placed in a vector as the representation of this leaf. In this way the min-max vector
has 2 ∗ d elements where d is the dimension of the training dataset. Note that at this
stage the concept label is not taken into consideration. Algorithm 1 gives the whole steps
for constructing a buffered k-D tree effectively.

In Algorithm 1, two collection variables are preserved for leaf structure and buffer cells.
Note that though a d balanced binary tree has 2d − 1 nodes, in our case there are many
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Algorithm 1 Construction of buffered k-D tree

Require:
training data set D = {(x, y)}, dataset dimension d

Ensure:
leaf set L, buffer cells set B

1: initialize L to be a collection of 2d empty queues
2: initialize B to be a collection of d empty arrays and m to be a d-ary vector
3: for r = 1 to d do
4: m(r) = mean(D(r))
5: end for
6: for t = 1, 2, · · · , |D| do
7: index = 0
8: for r = 1, 2, · · · , d do
9: if xi(r) < m(r) then

10: index = append(0)
11: else
12: index = append(1)
13: end if
14: end for
15: leaf = Findleaf(L, index)
16: Add xi to the queue indexed by leaf
17: Min-max expansion of all remaining queues in L
18: Update buffer cells B
19: end for
20: Remove empty queues out of L
21: return L and B

empty leaves, i.e., the associated queue is empty, which can be removed before buffering.
To further avoid generating too many leaves, some attributes with small variances (less
than some preset threshold) can be removed ahead. The procedure Findleaf locates a
leaf cell by the binary coding index, which means the actual path from the root to a leaf
when processing a data sample. Note that at this stage the buffered k-D tree provides
two kinds of information about the dataset. On the one hand, the leaves contain all data
samples clustered by all fields which describe the dataset distribution. On the other hand,
a set of buffer cells gives a brief representation of each leaf, which summarizes the main
characteristic of the data samples belonging to the leaf. In case of processing big datasets,
data samples stored in leaves would have to be discarded due to the limitation of processor
and storage systems.

2.3. KSVM training and model combination. In this subsection, we are going to
propose the training of KSVM models of sub training sets and combine them by the hits
provided by the buffered k-D tree. A divide-and-conquer strategy is proposed to train
a KSVM classifier. which is originated from the work proposed by Hsieh et al. [6]. The
training task of KSVM is to solve the following problem:

min
α

f(α) = αT V α − etα s.t. 0 ≤ α ≤ C (3)

where V is a Gram matrix whose element is defined as Vij = yiyjK(xi, xj). e is a vector of
all elements equal to one. C is a preset constant balancing the loss and model complexity.
The problem can be effectively solved by a quadratic optimizer when the training dataset
does not contain too many samples [7]. For a test data sample xt, the prediction of

KSVM is f(xt) =
∑|D|

i=1 α∗
i yiK(x, xi). However, when |D| is very large, the traditional

method to solve KSVM will fail. We apply a divide-and-conquer strategy to avoiding
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the problem of directly solving large training dataset. We divide the original problem
into s subproblems, which is equal to dividing the model parameters α into s groups and
optimization is performed in each group individually. We denote the optimal parameters
for the ith group as α(i). We propose to make use of a buffered k-D tree to provide some
hits for which parts should be retrained in the conquer step. Generally, the algorithm
searches all sub classifiers and their corresponding training data subsets and find one that
has the largest error among all classifiers to retrain with its original sub dataset and the
dataset far way from it. The distance between sub datasets is evaluated by the buffered
k-D tree. Algorithm 2 shows the main steps of the above procedure.

Algorithm 2 Divide-and-conquer KSVM training

Require:
training data set D = {(x, y)}, partition number s, error threshold θ

Ensure:
trained classifier h for the whole dataset D

1: randomly divide D into s disjoint subsets
2: initialize a buffered k-D tree T
3: let E be a prior queue for recording the loss of each classifier
4: for k = 1 to s do
5: train a KSVM with D(k), mark as hk

6: add D(k) to T through Algorithm 1
7: add the loss of hk to E
8: end for
9: while true do

10: find the classifier that has the largest error with the help of E
11: if the error is smaller than the threshold θ, break
12: denote h(k) to be the found classifier and D(∗) to be the sub dataset for training

h(k)
13: search T and find a leaf which is farthest from D(∗), denoted as D(#)
14: retrain hk with D(∗) and D(#)
15: end while
16: combine all hk to be h
17: return h

In Algorithm 2, it first divides the training dataset into s subsets. Then train KSVM
classifier and construct the buffered k-D tree at the same time. After that it launches
an updated procedure to refine the trained KSVM classifiers. During this procedure, the
KSVM classifier with largest training error will be retrained by its original training sub
dataset and the one that is farthest away from it. We use Euclidean distance between
buffers represented by min-max expansion vectors to evaluate the distance between two
sub datasets. The complexity of Algorithm 2 depends on the error threshold θ and can
be manually configured for comprising the model accuracy and convergence time.

3. Evaluations. The proposed method is evaluated on two benchmark datasets from
UCI data repository [8] which are widely used for evaluation in big data analysis. Table
1 lists some details for the two datasets.

The two datasets are both multiple-label in which Amazon has 4 classes and Act has 6
classes. Considering the proposed method performs a binary classification, a one-vs-rest
evaluation strategy is applied. In our evaluation, we set one category as positive and
the others as negative in turn and mark the average accuracy as the model performance.
However, the one-vs-rest strategy in building training set may lead to different prior
distribution of concept labels since different categories may contain different amounts of
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Table 1. Evaluation datasets from UCI data repository

Name Size Number of attributes Category Attribute type
Amazon 1500 10000 4 real

Act 9120 5625 6 real

samples. We use a training and test set division to avoid this unbalance. First a ratio
between the sizes of training and test set is preset. Then a random division operation
is performed to divide both the positive and negative sets according to the ratio. Thus,
the percentage of positive and negative can be kept in all cases. For a stable result, we
use a ten-fold validation for evaluation and the mean accuracy and variance are reported.
In this evaluation the kernel function is radius basic function and the width parameter
is set by a cross-validation tool provided by the implementation software package. The
loss function for evaluating the model accuracy is zero-one loss, which is widely used for
evaluating performance of classifiers. The KSVM is implemented by the LibSVM project
[9] in Matlab platform.

Meanwhile, to show the effectiveness of the proposed method, we implement two current
state-of-the-art methods for comparison. Table 2 shows the details of the methods for
comparison.

Table 2. Two methods for performance comparison

Name Paper Description
Met1 Mu et al. [10] compact hash bits KSVM training
Met2 Tian et al. [11] inductive semi-supervised KSVM learning

First of all, we report the overall accuracy, as well as the variance, of three methods
on two benchmark datasets. We highlight the best result on each dataset. From Table 3
we can see that the proposed method achieves the best result among all methods. The
overall accuracy comparison indicates that the proposed method captures the essential
distribution of the evaluation dataset. Though three methods adopt partition strategy,
the proposed method has an effective combination mechanism with the help of a buffered
k-D tree.

Table 3. Overall accuracy and variance of three methods (%)

Met1 Met2 KSVM-DT
Amazon 80.3 ± 3.1 78.8 ± 2.9 84.2 ± 2.6

Act 82.0 ± 4.5 83.1 ± 3.8 86.9 ± 2.3

Next we report the relation between the number of divisions and the model conver-
gence time. A fast convergence time is important for a big data analysis model. In this
evaluation, we record the number of iterations before the point that the model loss is less
than the threshold. Figure 2 shows the evaluation results for both datasets. From Figure
2 we can see that the number of divisions has much effect on the convergence time. And
the best convergence time for both datasets is around 80.

4. Conclusions. In this paper we proposed a method for big data classification based on
a division strategy. The method adopts kernel support vector machine as base classifier
and constructs a buffered k-D tree for retraining the poor classifiers. The method works
under a divide-and-conquer framework and it can avoid extremely large computational
cost. A buffered k-D tree stores some hints of sub datasets to KSVM classifiers, which
is used for retraining so as to improve the quality of classifiers bounded by a threshold.
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Figure 2. The relation between the number of divisions and the model
convergence time

A min-max expansion expression is imposed on each buffered partition, which is a set
of data samples, to generate a unique representation. Such expansion method has been
widely used in many machine learning tasks. The proposed method is evaluated on two
benchmark datasets previously applied for big data analysis and the results show that
it is superior to current state-of-the-art methods. The proposed method and its division
strategy can be used in other application context of big data mining and machine learning.
Future research directions include new data representation for the buffered k-D tree and
the extensions of the proposed method to multiple-class cases and regression.
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