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Abstract. Multiple Nonnegative Matrices Factorization (MNMF) is a promising meth-
od to study and analyze a dataset which has different types of features or relationships.
However, due to the high computational cost, MNMF cannot meet the needs of time
response for large-scale datasets. In this paper, we introduce a Parallel Multiple Non-
negative Matrices Factorization (PMNMF) approach which is implemented on Graphics
Processing Unit (GPU) under the Compute Unified Device Architecture (CUDA) frame-
work. Experimental studies demonstrate that PMNMF approach using GPU is able to
obtain 100× speedup in comparison to the traditional multiple nonnegative matrices fac-
torization under our experimental condition.
Keywords: MNMF, CUDA, GPU, Parallelization

1. Introduction. In nature, many real-world datasets include different types of features
which are able to provide information complementary with each other. For example, an
academic paper contains features: keywords, authors, citations and an object in Flicker
(http://www.flickr.com/) includes tags and images. Multiple matrices are able to effec-
tively represent this type of datasets. MNMF can be used to study and analyze this
type of dataset, such as dimensions reduction [1], collaborative filter [2] and clustering
analysis [3], to name just a few. However, due to the high computational cost, MNMF
cannot meet the demand of the time response when it handles the high volumes of data.
Therefore, we see a growing demand for accelerating MNMF to cater to different types of
applications.

Since Lee and Seung proposed the algorithm of Nonnegative Matrix Factorization
(NMF) [4] which is able to learn the parts of objects, different variants of NMF are
proposed by changing similarity measures [5] or altering the iterative rules [6] or adding
different constraints [7] to meet the requirements of different applications. In order to
represent a dataset which has multiple types of features, a tensor [8] is used by many
researchers in the process of discovering clusters or topics. However, the tensor is usually
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very sparse when it is used to represent a dataset in real-world application. In comparison
to tensor, multiple matrices [3, 9, 10] have lower sparsity when we use them to represent a
dataset having multiple types of features. Then, multiple nonnegative matrices factoriza-
tion can be used as a tool for dimensions reduction [1], clustering analysis [3], community
discover [10], etc.

The parallel matrix algorithms are also studied by many researchers [11, 12, 13, 14]. Par-
allel nonnegative matrix factorization is implemented in [11, 12], of which the most time-
consuming step, matrix multiplication, is calculated with BLAS library (http://docs.nvi-
dia.com/cuda/cublas/index.html) of nVIDIA CUDA. Antikainen et al. [15] proposed
nonnegative tensor factorization implementation which targets analysis of high-dimensio-
nal spectral images, including dimensionality reduction, feature extraction, and other
tasks related to spectral imaging. Inspired by these algorithms, we introduce a PMNMF
algorithm for reducing the running time of MNMF.

On the basis of the works mentioned above, we introduce a parallel multiple nonneg-
ative matrices factorization algorithm which is implemented on GPU under the CUDA
framework. In our implementation, the operations can be transferred to the combination
of some matrices’ multiplications, matrices additions and matrices element-wise divisions.
GPU has a significant speed advantage for those operations as opposed to Central Pro-
cessing Unit (CPU). The experimental results on various datasets demonstrate that the
speedup achieved by using a GPU is attractive, especially, with the increment of the num-
ber of objects, the dimensions of the objects and the value of the rank of the matrices
after factorization.

The remaining sections of this paper are organized as follows. We introduce MNMF
and give its parallel implementation in Section 2. Experiments on both synthetic and real
datasets are presented in Section 3. Finally, we conclude this paper in Section 4.

2. The Model of Parallel Multiple Nonnegative Matrices Factorization.

2.1. The MNMF algorithm. In this section, we briefly introduce multiple nonnega-
tive matrices factorization. Let X = {X1, X2, . . . , Xp} be a dataset which consists of p
matrices. p is the number of types of features in a dataset. The number of attributes
of the ith type of feature is Ii. X1, X2, . . . , Xp are p feature matrices, the dimensions of
which are Io×I1, . . . , Io×Ip, respectively. All the values in X are nonnegative. Taking an
academic paper as an example, there are three types of features: keywords, authors and
citations. The value of p is three. Therefore, an academic paper dataset can be repre-
sented by paper-author matrix X1, paper-keyword matrix X2 and paper-citation matrix
X3, respectively.

The objective function of MNMF is written as follows:

P
(
O,U1, . . . , Up

)
=

1

2

p∑
q=1

∥∥∥Xq − OU qT
∥∥∥2

, (1)

where O is the object facet and U q is the qth feature facet. The above optimization
problem can be solved iteratively by the following two steps:
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The detailed proof can be referred to [4, 16].

2.2. PMNMF on GPU. The implementation of PMNMF also includes two parts, up-
dating object facet and updating features facets, in which most of operations rely mainly
on matrix multiplication, matrix addition and matrix element-wise division. For matrix
multiplication, we can exploit the BLAS library which includes functions for Vector-
Vector, Vector-Matrix and Matrix-Matrix operations. Moreover, we implement a matrix
addition kernel function (1) and an element-wise matrix division kernel function (2) for
PMNMF. The overall procedure of PMNMF can be described as Algorithm 1.

Algorithm 1 PMNMF

1: Input: X1, X2, . . ., Xp, k.
2: Output: O, U1, U2, . . ., Up.
3: Initialize: Randomly choose an initial O, U1, U2, . . ., Up.
4: Initialize: Transfer the data to the GPU memory.
5: repeat
6: calculate OT O with GPU;
7: for q = 1 to p do
8: Fixed O, U1, . . ., U q−1, U q+1, . . ., Up, compute the following steps on GPU;
9: (1) calculate XqT

O on GPU;
10: (2) calculate U qOT O on GPU;
11: (3) calculate Equation (2) with kernel function in Figure 2 on GPU;
12: end for
13: Fixed U1, . . ., Up, compute the following steps on GPU;
14: Initialize temporary variables SumXU, SumUtU to zeros;
15: for q = 1 to p do
16: (1) calculate XqU q on GPU;
17: (2) calculate U qT

U q on GPU;
18: (3) calculate SumUtU = SumUtU + U qT

U q with kernel function in Figure 1 on GPU;
19: end for
20: calculate O × SumUtU on GPU;
21: calculate Equation (3) with kernel function in Figure 2 on GPU;
22: until Convergence.

}

Figure 1. The kernel function of matrix addition

}

Figure 2. The kernel function of element-wise matrix division
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2.3. Computational complexity. The MNMF algorithm mainly includes two compu-
tational steps: (1) updating feature facets; (2) updating object facet. The computational

cost of both step (1) and step (2) is
p∑

q=1

(IqIok + Iok
2 + Iqk

2). Therefore, the computa-

tional cost of MNMF is
p∑

q=1

(IqIok + Iok
2 + Iqk

2) in overall.

In the implementation, we load the entire dataset to the memory. Thus, we need
p∑

q=1

(IoIq) memory to save the original data. We need
p∑

q=1

(Iqk) + Iok memory to save the

results. Moreover, another k2 + 2 max(Iqk + Iok, 1 ≤ q ≤ p) memory space is required

for saving temporary results. For CPU implementation, we need
p∑

q=1

(IoIq) +
p∑

q=1

(Iqk) +

Iok + k2 + 2 max(Iqk + Iok, 1 ≤ q ≤ p) main memory space to run MNMF. Compared
to the computational cost of MNMF, PMNMF must consider the extra time cost of data
exchanges between main memory and GPU memory. Moreover, PMNMF also needs

another
p∑

q=1

(IoIq)+
p∑

q=1

(Iqk)+ Iok + k2 +2 max(Iqk + Iok, 1 ≤ q ≤ p) GPU memory space

to run PMNMF.

3. Experiments. In our experiments, the algorithms run on a workstation machine with
an NVIDIA Quadro FX580 GPU card. To evaluate the performance of PMNMF, we
randomly generate several synthetic datasets and use two real datasets to compare the
running speeds between MNMF and PMNMF. We implement both algorithms with C++.

3.1. Synthetic dataset. In this subsection, we test the performance of PMNMF from
the increment of the following aspects: the number of iterations, the number of dimensions,
the number of objects, the number of facets and the values of ranks. We randomly
generate different sizes of datasets to compare the running time between MNMF and
PMNMF. Tables 1-5 show the results produced by MNMF and PMNMF with different
iterations, dimensions, number of objects, ranks and facets, respectively. From Tables 1
and 5, the running time produced by both MNMF and PMNMF increases linearly with
the increment of iteration and the number of facets. From Figures 3(a) and 3(e), the
speedup of the running time between MNMF and PMNMF keeps about 130 under our
hardware configuration. That is because the number of threads that execute in parallel

Table 1. The comparative results of the computational time [Second] with
different iterations

Iteration 10 50 100 200 500
MNMF (CPU) 369.31 1807.5 3595.3 7148.3 17836

PMNMF (GPU) 3.542 13.897 26.843 52.878 133.7

The dataset is comprised of two facets. Each facet is a 5, 000 × 1, 000 matrix.
Rank = 50.

Table 2. The comparative results of computation time [Second] with dif-
ferent dimensions

Dimension 10 100 500 1000 5000 10,000
MNMF (CPU) 99.60 246.8 909.6 1807.5 10008 20349

PMNMF (GPU) 1.268 2.186 7.361 13.897 67.11 133.1

The dataset is comprised of two facets. The number of objects is 5, 000. We set the
iterations and rank to 50 and 50, respectively.
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Table 3. The comparative results of computation time [Second] with dif-
ferent number of objects

Object 100 500 1000 5000 10,000 50,000
MNMF (CPU) 52.44 196.0 357.3 1807.5 3904.8 19915

PMNMF (GPU) 1.138 2.034 3.284 13.897 24.313 128.2

The dataset is comprised of two facets. The number of dimensions is 1, 000. We set the
iterations and rank to 50 and 50, respectively.

Table 4. The comparative results of computation time [Second] with dif-
ferent ranks

Rank 5 10 50 100 500
MNMF (CPU) 164.8 337.3 1807.6 3795.5 27894

PMNMF (GPU) 4.463 4.533 13.90 20.065 103.0

The dataset is comprised of two facets. Each facet is a 5, 000 × 1, 000 matrix.
We set the iterations to 50.

Table 5. The comparative results of computation time [Second] with dif-
ferent facets

Facet 2 5 10 20
MNMF (CPU) 1807.5 4455.9 9011.0 17543.6

PMNMF (GPU) 13.897 33.569 66.662 133.121

Each facet of this dataset is a 5, 000 × 1, 000 matrix. We set the
iterations and rank to 50 and 50, respectively.
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Figure 3. The speedup on synthetic datasets

keeps constant with increment of iteration and the number of facets. Therefore, the
speedup is similar under the conditions of different iterations or the number of facets.

From Tables 2 and 3, the computational time produced by MNMF increases faster
than that produced by PMNMF with the increment of the dimensions or the number of
objects. Also, we can see from Figures 3(b) and 3(c) that the speedup increases with
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the increment of the dimensions or the number of objects. That is because the number
of running threads in parallel will add gradually with the increment of the dimensions
or the number of objects when updating the corresponding facet. From Table 4, we can
observe that the running time of MNMF increases rapidly with the increment of the value
of rank since the computational cost is directly proportional to the square of the value of
rank. However, the running time of PMNMF is not as rapid as MNMF. That is because
PMNMF is able to generate more running threads with increment of the values of rank
when updating all the facets. Thus, the speedup increases rapidly with the increment of
the values of the rank. In summary, the speedup between PMNMF and MNMF depends
mainly on the values of rank, the number of objects and the dimensions. The bigger the
calculating amount has, the more the number of running threads can be parallelized, and
PMNMF can obtain a higher speedup in comparison to MNMF.

3.2. Real-world dataset. To further investigate the performance of PMNMF in a real-
life dataset, we have evaluated PMNMF on another dataset NIPS which includes the
full texts and the authors of the paper of the Proceedings from 2000 to 2012 Neural
Information Processing Systems (NIPS) Conferences. NIPS includes 1752 documents and
two facets. Two facets have 2257, 13359 features, respectively.

Since the real dataset has the fixed number of objects, facets and dimensions, we show
the computational time and speedup produced by MNMF and PMNMF with increment
of only the iteration and the values of the rank. Tables 6 and 7 show the computational
time on NIPS with the increment of the iterations and the values of rank. From Table 6,

Table 6. The comparative results of computation time [Second] with dif-
ferent iterations on NIPS

Iteration 10 50 100 200 500
MNMF (CPU) 1502.6 7357.5 15255 30656.1 −

PMNMF (GPU) 6.886 32.682 64.90 129.234 321.791

We set rank to 50. – represents that we do not obtain the computational time,
because the computational time is too long.

Table 7. The comparative results of computation time [Second] with dif-
ferent ranks on NIPS

Rank 5 10 50 100 200 500
MNMF (CPU) 732.96 1534.0 7357.5 14698 30898 −

PMNMF (GPU) 8.787 9.012 32.682 45.70 83.73 241.530

We set the iterations to 50. – represents that we donot obtain the computational time
because the computational time is too long.
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we can see that the proportion of time costs produced by PMNMF between two different
iterations is approximately proportional to that produced by running MNMF. From Figure
4(a), we can also see that the speedups of different iterations are similar. However, from
Table 7, we can see that the increment of the computational time produced by running
MNMF is significantly faster than that produced by PMNMF. From Figure 4(b), we can
see that the speedup increases from less than 100 to more than 350 with the increment of
the values of the rank. This observation is similar to that produced by synthetic datasets.

4. Conclusion and Future Work. This paper introduces an efficient implementation of
PMNMF algorithm on GPU platform with CUDA framework. From the results in Section
3, we can see that the speedups measured on synthetic datasets and a real dataset are
around 100× compared to MNMF with a traditional C++ implementation. Our method
is able to provide a solution to the problem of high computational complexity of MNMF.
However, this implementation has to load the entire dataset to the memory of GPU in
the first place, which may limit the scope of usage of our method. In the future work, we
plan to develop a new version of PMNMF which can load a dataset to the GPU memory
by batches for large datasets.
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