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Abstract. In this paper, we investigate common due-window assignment scheduling
problem with controllable processing times and learning effect on a single machine. Our
goal is to find the window location and size, along with the associated job schedule to
minimize a cost function associated with the window location, window size, earliness and
tardiness. We show that the problem can be solved in O(n3) time. We also show that a
special case of the problem can be solved by a lower order algorithm.
Keywords: Scheduling, Due-window, Controllable processing times, Learning effect

1. Introduction. In recent years, by relaxing the classical scheduling assumption, a lot of
work has been done on the phenomenon of learning and/or controllable processing time. A
survey on this line of the scheduling problems with learning effects (controllable processing
times) could be found in Biskup [1] (Shabtay and Steiner [2]). More recent papers which
have considered scheduling problems with learning effects and/or controllable processing
times include Choi et al. [3], Leyvand et al. [4], Wang et al. [5], Yin and Wang [6], Yin
et al. [7], Yin et al. [8], Sun et al. [9], Yang et al. [10], Lu et al. [11], and Wang and
Wang [12].

On the other hand, increasing attention has been paid to the due-window assignment
scheduling problems (Liman et al. [13,14], Mosheiov and Sarig [15-17], Wang and Wang
[18], Wang et al. [19], Wu et al. [20], Yin et al. [21], Yang et al. [22], and Liu et al. [23]),
i.e., if a job is finished earlier (later) than its due-window, it has to be stored as inventory,
which results in an earliness penalty (it will incur a tardiness penalty as stated in the
contract). However, to the best of our knowledge, there exist only a few results concerning
due-window scheduling problems with learning effects and controllable processing times
simultaneously. Wang and Wang [24] considered a convex resource consumption function

model in which the processing time of job Jj is pj =
(

p̄jraj

uj

)k

, uj > 0, where p̄j, aj, uj

are the basic (normal) processing time, the learning rate, the amount of resource that
can be allocated of job Jj respectively, r is the position of job Jj scheduled in a sequence,
and k is a positive constant. Using the extended three-field notation scheme (Graham et
al. [25]), Wang and Wang [24] proved that the common due-window scheduling problem

1|pj =
(

p̄jraj

uj

)k ∣∣∣∑n
j=1 (αEj + βTj + δd+ γD)+θ

∑n
j=1Gjuj can be solved in polynomial

time, where α, β, δ and γ represent the per time unit penalties for earliness, tardiness, due
date, and due window size, respectively. Li et al. [26] considered the slack due window

scheduling problem 1|pj =
(

p̄jraj

uj

)k ∣∣∣∑n
j=1(αEj +βTj +δd1

j +γDj)+ηCmax +θ
∑n

j=1Gjuj

can be solved in polynomial time, where [d1
j = pj + q1, d2

j = pj + q2] is the due-window of

job Jj, Dj is due-window size, both q1 and q2 are decision variables. In the real production
process, the resource cost availability is limited; hence, in this paper, we continue the work
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of Wang and Wang [24], by considering limited resource cost availability constraint, i.e.,

the problem 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤ V
∣∣∑n

j=1 (αEj + βTj + δd+ γD).

In Section 2, we state the problem formally. In Sections 3 and 4, we provide an O(n3)-
time algorithm for the general case and an O(n log n)-time algorithm for a special case.
In Section 5, conclusions are presented.

2. Problem Formulation. There is given a single machine and n independent jobs
J = {J1, J2, . . . , Jn} at time zero. As in Wang and Wang [24] and Li et al. [26], we
consider the following convex resource consumption model:

pj =

(
p̄jr

aj

uj

)k

, uj > 0, (1)

where k is a positive constant, pj (p̄j) is the actual (normal) processing time of job Jj, r
is the position of job Jj scheduled in a sequence, aj ≤ 0 is a position-dependent learning
index of job Jj, and uj is the amount of resource that can be allocated to job Jj.

Let d(≥ 0) ((d+D), D ≥ 0) represent the starting (finishing) time of the due-window,
D is the due-window size, d and D are both decision variables. For a given schedule
π, let Cj = Cj(π) be the completion time of job Jj, Tj = max{0, Cj − d − D} (Ej =
max{0, d−Cj}) is the tardiness (earliness) value of job Jj, j = 1, 2, . . . , n. The objective
is to determine the optimal due date d, due window size D and to find a schedule π which
minimizes

Z(d,D, π, u) =
n∑

j=1

(αEj + βTj + δd+ γD) , (2)

subject to
∑n

j=1Gjuj ≤ V , where Gj is the per time unit cost associated with the
resource allocation and V > 0 is a given constant. Using the three-field notation of

Graham et al. [25] the problem can be denoted as 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤
V |
∑n

j=1 (αEj + βTj + δd+ γD).

3. The Problem 1|pj =
(

p̄j r
aj

uj

)k

,
∑∑∑n

j=1 Gjuj ≤ V |
∑∑∑n

j=1(αEj + βTj + δd + γD).

If the processing times are given constants, then the following theorem holds.

Theorem 3.1. (Liman et al. [14]) For the problem 1||
∑n

j=1 (αEj + βTj + δd+ γD), there
hold the following properties.

(1) There exists an optimal schedule π∗ without any machine idle time between the
starting time of the first job and the completion time of the last job. Furthermore, the
first job in the schedule starts at time zero.

(2) There exists an optimal schedule with the property that d and d +D coincide with
the completion times of the kth and lth jobs (l ≥ k), i.e., k = ⌈n(γ − δ)/α⌉ and l =
⌈n(β − γ)/β⌉.

(3) The optimal total cost can be written as: Z(d,D, π, u) =
∑n

j=1 ωjp[j], where [j]
denotes the jth job in a sequence, and the positional weight of position j in the schedule
is given by

ωj = min {nδ + (j − 1)α, nγ, (n+ 1 − j)β} , r = 1, 2, . . . , n. (3)

Note that jobs in positions j = 1, 2, . . . , k will be early jobs, jobs in positions j =
k + 1, . . . , l will be window jobs, jobs in positions j = l + 1, . . . , n will be tardy jobs
(Liman et al. [14]), and the values k and l are independent of the actual processing times
and the schedule. Hence, from (1) and Theorem 3.1, (2) can be rewritten as

Z(d,D, π, u) =
n∑

j=1

(αEj + βTj + δd+ γD)
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=
n∑

j=1

ωjp[j] =
n∑

j=1

ωj

(
p̄[j]j

a[j]

u[j]

)k

, (4)

where ωj is calculated by (3).

Theorem 3.2. For a given schedule π = (J[1], J[2], . . . , J[n]), the optimal resource alloca-

tion of the problem 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj + βTj + δd + γD) is a

function of the job sequence, that is

u∗[j](π) =
(ωj)

1/(k+1)(G[j])
−1/(k+1)

(
p̄[j]j

a[j]
)k/(k+1)∑n

j=1(ωj)1/(k+1)
(
p̄[j]G[j]j

a[j]
)k/(k+1)

× V, j = 1, 2, . . . , n, (5)

where ωj is calculated by (3).

Proof: For any given schedule π = (J[1], J[2], . . . , J[n]), the Lagrange function is

L(d,D, u, ϑ) =
n∑

j=1

(αEj + βTj + δd+ γD) + ϑ

(
n∑

j=1

G[j]u[j] − V

)

=
n∑

j=1

ωj

(
p̄[j]j

a[j]

u[j]

)k

+ ϑ

(
n∑

j=1

G[j]u[j] − V

)
(6)

where ϑ is the Lagrangian multiplier. Deriving (6) with respect to the decision variables
u[j] and ϑ, we have

∂L(d,D, u, ϑ)

∂ϑ
=

n∑
j=1

G[j]u[j] − V = 0, (7)

∂L(d,D, u, ϑ)

∂u[j]

= ϑG[j] − kωj ×
(
p̄[j]j

a[j]
)k

(u[j])k+1
= 0. (8)

Using (7) and (8) we obtain

u[j] =

(
kωj

(
p̄[j]j

a[j]
)k)1/(k+1)

(ϑG[j])1/(k+1)
(9)

and

ϑ1/(k+1) =

∑n
j=1(kωj)

1/(k+1)
(
p̄[j]G[j]j

a[j]
)k/(k+1)

V
. (10)

From (9) and (10), we have

u∗[j](π) =
(ωj)

1/(k+1)(G[j])
−1/(k+1)

(
p̄[j]j

a[j]
)k/(k+1)∑n

j=1(ωj)1/(k+1)
(
p̄[j]G[j]j

a[j]
)k/(k+1)

× V.

�

Theorem 3.3. For the problem 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj + βTj + δd

+γD), the optimal schedule can be determined by solving an assignment problem.

Proof: Substituting (5) into (4), we obtain a new unified expression for the objective
function

∑n
j=1(αEj + βTj + δd+ γD) under an optimal resource allocation:

Z(d,D, π, u∗) = V −k

(
n∑

j=1

(ωj)
1/(k+1)

(
p̄[j]G[j]j

a[j]
)k/(k+1)

)k+1

, (11)
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ωj is calculated by (3). Let xjr (j = 1, 2, . . . , n; r = 1, 2, . . . , n) be a 0-1 variable such that

xjr =

{
1 if job Jj is processed in the rth position,
0 otherwise,

(12)

and

λjr = (ωr)
1/(k+1) (p̄jGjr

aj)k/(k+1) . (13)

Then the optimal schedule of the problem 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj +

βTj + δd+ γD) can be formulated as the following linear assignment problem:

Min Z = V −k

(
n∑

j=1

n∑
r=1

λjrxjr

)k+1

(14)

s.t.
n∑

r=1

xjr = 1, j = 1, 2, . . . , n, (15)

n∑
j=1

xjr = 1, r = 1, 2, . . . , n, (16)

xjr = 0 or 1, j, r = 1, 2, . . . , n. (17)

�

For the problem 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj + βTj + δd+ γD), we can

propose the following optimization algorithm.

Algorithm 3.1
Step 1. Determine the value of k∗ = ⌈n(γ − δ)/α⌉ and l∗ = ⌈n(β − γ)/β⌉.
Step 2. Compute λjr = (ωr)

1/(k+1) (p̄jGjr
aj)k/(k+1) where ωr is calculated by (3).

Step 3. Solve the linear assignment problem (14)-(17) to determine the optimal schedule
π∗.
Step 4. Compute the optimal resources by (5).
Step 5. Compute the optimal processing times by (1).
Step 6. Set d∗ = C[k∗] and D∗ = C[l∗] − C[k∗].

Theorem 3.4. The scheduling problem 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj +

βTj + δd+ γD) can be solved in O(n3) time by Algorithm 3.1.

Proof: The correctness of the algorithm follows from Theorems 3.1, 3.2 and 3.3. Step
2 requires O(n2) and Step 3 O(n3) time; Steps 1, 4, 5, and 6 can be performed in linear
time. Thus the overall computational complexity of Algorithm 3.1 is O(n3). �

In order to illustrate Algorithm 3.1 for 1|pj =
(

p̄jraj

uj

)k

,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj +

βTj + δd+ γD), we solve the instance as follows:

Example 3.1. Data: n = 7, k = 2, α = 11, β = 18, δ = 5, γ = 7, V = 200, and the
other data are given in Table 1.

Table 1. The data of Example 3.1

Ji J1 J2 J3 J4 J5 J6 J7

p̄j 25 20 26 18 15 16 10
aj −0.05 −0.20 −0.06 −0.23 −0.32 −0.16 −0.15
Gj 5 2 6 3 7 1 8
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Solution.
Step 1. By Theorem 3.1, we have k∗ = ⌈n(γ − δ)/α⌉ = ⌈7(7 − 5)/11⌉ = 2 and l∗ =
⌈n(β − γ)/β⌉ = ⌈7(18 − 7)/18⌉ = 5.
Step 2. ω1 = 35, ω2 = 46, ω3 = ω4 = ω5 = 49, ω6 = 36, ω7 = 18. The values

λjr = (ωr)
1/(k+1) (p̄jGjr

aj)k/(k+1) are given in Table 2.
Step 3. Solve the linear assignment problem (14)-(17), and we obtain that π∗ = (J1 →
J6 → J2 → J7 → J4 → J5 → J3) (see bold in Table 2).

Step 4. From (5), we have u∗1 = (ω1)1/3(G1)−1/3(p̄11a1 )2/3∑n
j=1(ωj)1/3(p̄[j]G[j]j

a[j])
k/(k+1) × 200 = 9.0795, u∗6 = 11.7299,

u∗2 = 10.2611, u∗7 = 4.1042, u∗4 = 7.5585, u∗5 = 3.9767, u∗3 = 6.5855.
Step 5. From (1), we have p∗1 = 7.5815, p∗6 = 1.4905, p∗2 = 2.4481, p∗7 = 3.9167, p∗4 = 2.7049,
p∗5 = 4.5198, p∗3 = 12.3412.
Step 6. Set d∗ = C[2∗] = 7.5815 + 1.4905 = 9.0720 and D∗ = C[l∗] − C[k∗] = 2.4481 +
3.9167 + 2.7049 = 9.0697.

Table 2. The λjr values of Example 3.1

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
λjr = J1 81.7767 87.5303 88.1931 87.3514 86.7041 77.7623 61.4037

J2 38.2586 38.2081 36.9677 35.5766 34.5337 30.4126 23.6475
J3 94.7922 100.9937 101.4838 100.3227 99.4313 89.0686 70.2592
J4 46.7324 46.0282 44.1743 42.2680 40.8463 35.8410 27.7825
J5 72.8029 68.7848 64.4277 60.5925 57.7756 50.1443 38.5120
J6 20.7700 21.1295 20.6658 20.0413 19.5699 17.3185 13.5216
J7 60.7318 62.0692 60.8714 59.1452 57.8400 51.2482 40.0536

4. A Special Case. In the following, we consider a special case, i.e., aj = a for all jobs,
and present a simpler and more efficient solution for this case.

Lemma 4.1. (Hardy et al. [27]) The sum of products
∑n

j=1 φjψj is minimized if sequence
φ1, φ2, . . . , φn is ordered nondecreasingly and sequence ψ1, ψ2, . . . , ψn is ordered nonin-
creasingly or vice versa, and it is maximized if the sequences are ordered in the same
way.

From (11) and aj = a, we have

Z(d,D, π, u∗) = V −k

(
n∑

j=1

(ωj)
1/(k+1)

(
p̄[j]G[j]j

a
)k/(k+1)

)k+1

= V U−k

(
n∑

j=1

φjψ[j]

)k+1

,

(18)
where

φj = (ωj)
1/(k+1) (j)ak/(k+1) , (19)

ψ[j] =
(
p̄[j]G[j]

)k/(k+1)
, (20)

where ωj is calculated by (3).
Based on the above analysis Theorems 3.1, 3.2 and Lemma 4.1, we develop an O(n log n)

algorithm that solves the problem 1|pj =
(

p̄jraj

uj

)k

, aj = a,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj

+βTj + δd+ γD).

Algorithm 4.1
Step 1. Determine the value of k∗ = ⌈n(γ − δ)/α⌉ and l∗ = ⌈n(β − γ)/β⌉.
Step 2. Compute φj and ψ[j] by (19) and (20).
Step 3. Apply Lemma 4.1 (i.e., HLP rule) to determining the optimal schedule π∗.
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Step 4. Compute the optimal resources by (5).
Step 5. Compute the optimal processing times by (1).
Step 6. Set d∗ = C[k∗] and D∗ = C[l∗] − C[k∗].

Obviously, Algorithm 4.1 can be solved in O(n log n) time (Step 1 takes constant time
and Steps 2, 4-6 take O(n) time, and Step 3 requires the implementation of the HLP rule,
which requires O(n log n) time).

Based on the above analysis, we have the following theorem.

Theorem 4.1. The 1|pj =
(

p̄jraj

uj

)k

, aj = a,
∑n

j=1Gjuj ≤ V |
∑n

j=1(αEj +βTj +δd+γD)

problem can be solved in O(n log n) time by Algorithm 4.1.

5. Conclusions. We considered the single machine scheduling problem with learning
effect and resource-dependent processing times. We showed that the weighted combination
of the earliness, tardiness, window location, window size, and resource cost minimization
problem can be solved in polynomial time. For future research, it is worthwhile to study
other scheduling problems with learning effects and resource allocation, for example, the
flow shop scheduling problems and the parallel machine scheduling problems.
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