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Abstract. This paper proposes a modified NLS-DY conjugate gradient method with
disturbance parameters. And under the strong Wolfe line search, the sufficient descent
condition and the global convergence are established. At last, the results of numerical
experiments demonstrate the effectiveness of the presented algorithm.
Keywords: Conjugate gradient method, Global convergence, Strong Wolfe line search,
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1. Introduction. Consider the following unconstrained optimization problem (UP):

min f(x), x ∈ Rn (1)

where x ∈ Rn is a real vector with n ≥ 1 component, f : Rn → R is a smooth function
and its gradient g is available. Conjugate gradient method (CGM) is widely used to solve
UP, especially when the dimension n is large. The detailed CGM is as follows:

xk+1 = xk + αkdk, k = 1, 2, . . . (2)

where x1 is a given initial point and αk is the step length along dk. The search direction
dk is generated by

dk =

{
−g1, k = 1
−gk + βkdk−1, k ≥ 2

(3)

where gk = ∇f(xk) is the gradient of f(x) at xk and βk is an important parameter
depending on xk−1 and xk. In respect to different formulas of βk, there are distinct con-
jugate gradient methods (CGMs) including Fletcher-Reeves method (FR), Polak-Ribiere-
Polyak method (PRP), Dai-Yuan method (DY), Liu-Storey method (LS), Hestenes-Stiefel
method (HS), etc. Over the years, improved algorithms and many variants of hybrid meth-
ods based on them have been proposed. For instance, there are some hybrid CGMs [1-4].
In [5,6], some improved algorithms for a kind of CGM are presented. In [7], Wu and Du
raised a modified CGM with disturbance factors. And in [8], Shi and Shan presented
the NLS-DY algorithm with disturbance factors, which is based on LS and DY methods,
where the parameter βk is yielded by

βk =


gT

k (gk − gk−1)

(gT
k dk−1)

2 − dT
k−1gk−1

, if (1 − cos θ) ∥gk∥2 >
∣∣gT

k gk−1

∣∣
max

{
∥gk∥2

dT
k−1yk−1

, 0

}
, others

(4)
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Introducing the disturbance factor θ, on the premise of guaranteeing βk ≥ 0, can reduce
unnecessary calculating steps and improve convergence rate. In addition, the NLS-DY
method makes full use of the strong convergence property of the DY method.

In [9], Fan proposed a new CGM with double parameters to improve the deficiency of
traditional CGMs. And Shan and Liu [10] presented an algorithm with three parameters.
A remarkable feature of the two methods is that the values of parameters are adjustable
to guarantee βk > 0. Thus the algorithms are more flexible in practical computation.

Based on [8] and inspired by [9] and [10], we give a new algorithm with new parameter
βk, and denote it by mLS-DY method, as follows:

βk =


gT

k (gk − gk−1)

u |gT
k dk−1| − dT

k−1gk−1

, if (1 − cos θ) ∥gk∥2 >
∣∣gT

k gk−1

∣∣
max

{
∥gk∥2

dT
k−1yk−1

, 0

}
, others

(5)

where ∥ · ∥ is the 2-norm. θ satisfies θ ∈ (0, π/2). For βk > 0, the parameter u > 0.
The search direction dk satisfies sufficient descent condition [11], that is

gT
k dk ≤ −m ∥gk∥2 , m > 0 (6)

And inspired by [8], the search direction dk of our algorithm is:

dk =


−gk, k = 1

−θkgk + βkdk−1 = −
(

1 + βk
gT

k dk−1

∥gk∥2

)
gk + βkdk−1, k ≥ 2

(7)

The characteristic of our algorithm, compared with the NLS-DY method, is introduc-
ing a parameter u. You can assign u different values to solve optimization problems of
various functions. Furthermore, an appropriate value for the parameter u can generate
a promising computational performance. Thus, adding u can not only enlarge the using
scope but also improve the efficiency of the mLS-DY method.

The rest of the paper is organized as follows. In Section 2, we present our algorithm.
In Section 3, we discuss the sufficient descent property and the global convergence of
algorithm under the strong Wolfe line search. In Section 4, numerical results are shown
to illustrate the efficiency of the proposed method. Conclusions are stated in the last
section.

2. Algorithm. We describe our algorithm framework as follows:
Step 1. Give any initial point x1 ∈ Rn, compute f1 = f(x1) and g1 = g(x1), set

d1 = −g1, accuracy tolerance ε > 0, and set the counter k := 1.
Step 2. If ∥g1∥ ≤ ε, then stop. Otherwise, go to Step 3.
Step 3. Compute αk by the strong Wolfe line search, namely{

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk∣∣gT

k dk−1

∣∣ ≤ −σgT
k−1dk−1

(8)

where δ satisfies 0 < δ < 1/2, and σ satisfies δ < σ < 1.
Step 4. Generate the next iteration by xk+1 = xk +αkdk, and compute gk+1 = g(xk+1).

If ∥gk+1∥ ≤ ε, terminate; otherwise, go to Step 5.
Step 5. Compute βk by (5), and dk by (7).
Step 6. Let k := k + 1, and go to Step 3.
The numbers of iterations, function evaluations, gradient evaluations and time are dis-

tinct when the parameter u takes different values. In order to improve the computational
efficiency, you can choose an appropriate parameter value.
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3. Sufficient Descent Property and Global Convergence of the mLS-DY Meth-
od. In this section, sufficient descent property and global convergence of the proposed
algorithm are proved. And the following assumptions are necessary.

Assumption 3.1. The objective function f(x) is bounded from below on the level, namely,
∧ =

{
x ∈ Rn

∣∣f(x) ≤ f(x1)
}
, where x1 is the initial point.

Assumption 3.2. Within a neighborhood ψ of the level, f(x) is continuously differen-
tiable, and its gradient g(x) = ∇f(x) satisfies the Lipschitz condition.

3.1. Sufficient descent property. The following lemma gives Zoutendijk condition [12].

Lemma 3.1. Suppose that f(x) satisfies Assumptions 3.1 and 3.2. If dk satisfies suffi-
cient descent condition (6), and the step-length αk satisfies the strong Wolfe line search

condition (8), then the Zoutendijk condition is established, that is
∑∞

k=1

(gT
k dk)

2

∥dk∥2 < +∞.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. The step-length αk satisfies
the strong Wolfe line search condition (8). Compute βk by (5), and dk by (7); if gk ̸= 0
is found for each k ≥ 1, then gT

k dk < 0 for all k ≥ 1.

Proof: We divide the proof into three following cases.

Case (i) If βk =
∥gk∥2

dT
k−1yk−1

gT
k dk = gT

k

[
−
(

1 + βk
gT

k dk−1

∥gk∥2

)
gk +

∥gk∥2

dT
k−1yk−1

dk−1

]

= gT
k

[
−
(

1 +
gT

k dk−1

dT
k−1yk−1

)
gk +

∥gk∥2

dT
k−1yk−1

dk−1

]
= −∥gk∥2 < 0.

Case (ii) If βk = 0 or gT
k dk−1 = 0, we obtain gT

k dk = −∥gk∥2 < 0.

Case (iii) If βk =
gT

k (gk−gk−1)

u|gT
k dk−1|−dT

k−1gk−1
, for k = 1, we have gT

1 d1 = −∥g1∥2 < 0. We assume

that gT
k−1dk−1 < 0 holds for k − 1 and k > 2, and we prove gT

k dk < 0 for k.

gT
k dk

= −
(

1 + βk ·
gT

k dk−1

∥gk∥2

)
· ∥gk∥2 + βk · gT

k dk−1

= −
(

1 +
gT

k (gk − gk−1)

u |gT
k dk−1| − dT

k−1gk−1

· g
T
k dk−1

∥gk∥2

)
∥gk∥2 + |βk| ·

∣∣gT
k dk−1

∣∣
≤ −

(
1 +

∥gk∥2 + (1 − cos θ) ∥gk∥2

−dT
k−1gk−1

· g
T
k dk−1

∥gk∥2

)
∥gk∥2 +

∣∣∣∣ gT
k (gk − gk−1)

u |gT
k dk−1| − dT

k−1gk−1

∣∣∣∣ · ∣∣gT
k dk−1

∣∣
≤ −

[
1 +

2 − cos θ

−dT
k−1gk−1

·
(
−σdT

k−1gk−1

)]
· ∥gk∥2 +

∥gk∥2 + (1 − cos θ) ∥gk∥2

−dT
k−1gk−1

·
(
−σdT

k−1gk−1

)
= −∥gk∥2 < 0

Therefore, for all k ≥ 1, gT
k dk < 0 always holds.

3.2. Global convergence.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold. Let {gk} be generated by
algorithm mLS-DY. Then we obtain lim

k→∞
inf ∥gk∥ = 0.
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Proof: Suppose that the stated conclusion is not true. Then, there exists a constant
ε > 0 such that ∥gk∥2 ≥ ε2, ∀k > 0. For dk = −θkgk + βkdk−1, we can get

∥dk∥2 = (βk)
2 · ∥dk−1∥2 − 2θkd

T
k gk − θ2

k · ∥gk∥2

Case (i) If βk =
gT

k (gk − gk−1)

u |gT
k dk−1| − dT

k−1gk−1

, divided by
(
gT

k dk

)2
and for gT

k dk ≤ −∥gk∥2, we

obtain

∥dk∥2

(gT
k dk)

2 = (βk)
2 · ∥dk−1∥2

(gT
k dk)

2 − 2θk

gT
k dk

− θ2
k ∥gk∥2

(gT
k dk)

2

=

[
gT

k (gk − gk−1)

u |gT
k dk−1| − dT

k−1gk−1

]2 ∥dk−1∥2

(gT
k dk)

2 − 2θk

gT
k dk

− θ2
k ∥gk∥2

(gT
k dk)

2

≤ (2 − cos θ)2 ∥gk∥4(
dT

k−1gk−1

)2 · ∥dk−1∥2

∥gk∥4 +
2θk

∥gk∥2 − θ2
k ∥gk∥2

∥gk∥4

=
(2 − cos θ)2 ∥dk−1∥2(

dT
k−1gk−1

)2 − 1

∥gk∥2 (θ2
k − 2θk + 1 − 1)

=
(2 − cos θ)2 ∥dk−1∥2(

dT
k−1gk−1

)2 − (θk − 1)2

∥gk∥2 +
1

∥gk∥2

≤ (2 − cos θ)2 ∥dk−1∥2(
dT

k−1gk−1

)2 +
1

∥gk∥2

Set M = max
{

1,
[
(2 − cos θ)2]k−1

,
[
(2 − cos θ)2]k−2

, . . . , (2 − cos θ)2
}

, we get ∥dk∥2

(gT
k dk)

2 ≤

M
∑k

i=1
1

∥gi∥2 ≤ Mk
ε2 , and thus,

(gT
k dk)

2

∥dk∥2 ≥ ε2

Mk
,
∑∞

k=1

(gT
k dk)

2

∥dk∥2 ≥
∑∞

k=1
ε2

Mk
= ∞ which

contradicts Lemma 3.1. Therefore, the desired result holds.

Case (ii) If βk = ∥gk∥2

dT
k−1yk−1

, contradictions can be obtained using the same method in Case

(i), thus denying the original assumption, and Theorem 3.2 is proved.

4. Numerical Experiments. In this section, we select some functions to test numerical
performance of mLS-DY algorithm by comparing with the NLS-DY method in [8]. All
codes run on PC with 1.80 GHz CPU processor, 4.0 GB RAM memory and Windows XP
operating system.

Numerical results are presented in Table 1. Dim is the dimension of tested functions.
NI/NF/NG/T denotes the total numbers of iterations, function evaluations, gradient
evaluations and CPU time in seconds, respectively. The values of parameters are as
follows: δ = 0.01, σ = 0.85, ε = 10−6, θ = arccos(1/3), u = 9.

From the table, we can find that, in terms of numbers of iteration, objective func-
tion value calculation, objective function gradient value calculation and time, our new
algorithm is more efficient.

Table 1. Analysis of the numerical results

Problem Dim
mLS-DY NLS-DY

(NI/NF/NG/T) (NI/NF/NG/T)
Rosenbrock 2 30/51/36/1.6055 40/70/50/2.3262

Freudenstein & Roth 6 31/50/34/1.3440 53/85/59/2.5259
Wood 4 323/472/380/19.9956 405/577/472/24.1972
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5. Conclusions. In this paper, we propose mLS-DY method based on NLS-DY method
in [8]. Our algorithm guarantees sufficient descent condition and is proved to be globally
convergent if it is implemented with the strong Wolfe conditions. Finally, numerical
results show that our method is superior on the convergence and numerical performance,
which can be used in numerical calculation.

The step-length αk computed by the strong Wolfe line search requires a large amount of
debugging. As further work, it should be worth simplifying the search process to improve
the efficiency of optimization.
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