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Abstract. This paper discusses the identification problem of multi-input output-error
moving average systems. A filtering based multi-innovation stochastic gradient algorithm
is derived by using the filtering technique and the multi-innovation identification theory.
The simulation results confirm that the proposed algorithm can generate highly accurate
parameter estimates compared with the multi-innovation stochastic gradient algorithm.
Keywords: Multi-innovation identification, Stochastic gradient algorithm, Filtering
technique, Parameter estimation

1. Introduction. System identification is the methodology of modeling and identifica-
tion of systems [1, 2, 3]. Many physical systems have multiple inputs and multiple outputs
in industrial processes [4, 5, 6], so much work has been performed on the study of modeling
and identification of multivariable systems [7, 8, 9]. Recently, Nasirin et al. studied an
adaptive scheme of designing sliding mode control for a class of multi-input multi-output
nonlinear systems [10]. Tao provided some fundamental theoretical aspects and technical
issues of multivariable adaptive control [11].

Many parameter estimation methods have been developed for multivariable systems
[12, 13, 14], e.g., the recursive parameter estimation algorithms [15, 16, 17], the auxiliary
model identification methods [18, 19, 20], and the iterative identification methods [21, 22,
23].

The multi-innovation identification theory has been proved to be effective in the field
of system identification [24, 25, 26]. Many research results have been performed for linear
regression systems [27], and nonlinear systems [28, 29, 30]. The main role is to improve the
parameter estimation accuracy by expanding a scalar innovation to an innovation vector.
The filtering technique is another effective method to improve the convergence rates and
the parameter estimation accuracy [31]. By adopting the filtering technique and the
multi-innovation identification theory, this paper discusses the identification problem for
multi-input output-error moving average (OEMA) systems and presents a data filtering
based multi-innovation extended stochastic gradient (F-MI-ESG) identification algorithm.
Compared with the multi-innovation extended stochastic gradient (MI-ESG) identification
algorithm, the F-MI-ESG algorithm can obtain more accurate parameter estimates.

The rest of this paper is organized as follows. Section 2 discusses the identification
model of multi-input OEMA systems. Section 3 presents a data filtering based multi-
innovation extended stochastic gradient algorithm. Section 4 provides an illustrative
example. Finally, Section 5 gives some concluding remarks.
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2. The System Description and Identification Model. Consider the multi-input
OEMA system:

y(t) =
r∑

j=1

Bj(q)

Aj(q)
uj(t) + D(q)v(t), (1)

where uj(t) ∈ R, j = 1, 2, · · · , r, are the inputs, y(t) ∈ R is the system output, v(t) ∈ R
is the random white noise with zero mean and variance σ2, and Aj(q), Bj(q) and D(q)
are polynomials in the unit backward shift operator q−1 with

Aj(q) := 1 + aj1q
−1 + aj2q

−2 + · · · + ajnj
q−nj ,

Bj(q) := bj1q
−1 + bj2q

−2 + · · · + bjnj
q−nj ,

D(q) := 1 + d1q
−1 + d2q

−2 + · · · + dnd
q−nd .

Assume that the orders nj and nd are known, y(t) = 0, uj(t) = 0 and v(t) = 0 as t < 0, and
aji, bji and dj are the unknown parameters to be identified from available input-output
data {u1(t), u2(t), · · · , ur(t), y(t)}.

We use a linear filter D−1(q) to filter the input-output data. Define the filtered input
ujf(t), the filtered noise-free output xjf(t) and the filtered output yf(t) as

ujf(t) := D−1(q)uj(t) = −
nd∑
i=1

diujf(t − i) + uj(t), (2)

xjf(t) :=
Bj(q)

Aj(q)
ujf(t) = −

nj∑
i=1

ajixjf(t − i) +

nj∑
i=1

bjiujf(t − i), (3)

yf(t) := D−1(q)y(t) = −
nd∑
i=1

diyf(t − i) + y(t). (4)

Multiplying both sides of (1) by D−1(q), Equation (1) can be expressed as

yf(t) =
r∑

j=1

xjf(t) + v(t) = −
r∑

j=1

nj∑
i=1

ajixjf(t − i) +
r∑

j=1

nj∑
i=1

bjiujf(t − i) + v(t). (5)

Substituting (5) into (4), we can obtain

y(t) = −
r∑

j=1

nj∑
i=1

ajixjf(t − i) +
r∑

j=1

nj∑
i=1

bjiujf(t − i) +

nd∑
i=1

diyf(t − i) + v(t). (6)

Let the superscript T denote the vector/matrix transpose. Define the filtered information
vectors

φf(t) :=
[
ϕT

1f(t), ϕ
T
2f(t), · · · , ϕT

rf(t), yf(t − 1), yf(t − 2), · · · , yf(t − nd)
]T ∈ Rn,

ϕjf(t) := [−xjf(t − 1), · · · ,−xjf(t − nj), ujf(t − 1), · · · , ujf(t − nj)]
T ∈ R2nj ,

and the parameter vectors

θ :=
[
ϑT

1 , ϑT
2 , · · · ,ϑT

r , dT
]T ∈ Rn,

ϑj :=
[
aj1, aj2, · · · , ajnj

, bj1, bj2, · · · , bjnj

]T ∈ R2nj ,

d := [d1, d2, · · · , dnd
]T ∈ Rnd .

Equations (3) and (6) can be rewritten as

xjf(t) = ϕT
jf(t)ϑj(t), (7)

y(t) = φT
f (t)θ + v(t). (8)

Equation (8) is the identification model of the multi-input OEMA system in (1), and
contains all the parameters in θ to be identified.
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3. The Data Filtering Based Multi-Innovation Stochastic Gradient Identifica-
tion Algorithm. The focus of this paper is to combine the multi-innovation identification
theory and the filtering technique to improve the parameter estimation accuracy of the
stochastic gradient identification algorithm. Note that the filtered variables ujf(t), xjf(t)
and yf(t) in the information vector φf(t) are all unknown, so the stochastic gradient algo-
rithm cannot be applied to obtain the estimate of θ directly. We use the estimates ûjf(t),
x̂jf(t) and ŷf(t) to construct the estimate of φ̂f(t) [32]. The details are as follows.

Let θ̂(t), ϑ̂j(t) and d̂(t) be the estimates of θ, ϑj and d at time t. Replacing ϕjf(t) and

ϑj in (7) with their estimates ϕ̂jf(t) and ϑ̂j(t), the estimate of xjf(t) can be computed by

x̂jf(t) = ϕ̂T
jf(t)ϑ̂j(t).

Use d̂(t) :=
[
d̂1(t), d̂2(t), · · · , d̂nd

(t)
]T

to construct the estimate D̂(t, q) of the polynomial

D(q):

D̂(t, q) := 1 + d̂1(t)q
−1 + d̂2(t)q

−2 + · · · + d̂nd
(t)q−nd ,

and the estimates ŷf(t) and ûjf(t) can be obtained by filtering the input-output data with

D̂−1(t, q):

ŷf(t) := D̂−1(t, q)y(t) = [−ŷf(t − 1),−ŷf(t − 2), · · · ,−ŷf(t − nd)]d̂(t) + y(t),

ûjf(t) := D̂−1(t, q)ujf(t) = [−ûjf(t − 1),−ûjf(t − 2), · · · ,−ûjf(t − nd)]d̂(t) + uj(t).

Then the estimate φ̂f(t) can be constructed by the estimates x̂jf(t− i), ûjf(t− i) and ŷf(t):

φ̂f(t) :=
[
ϕ̂T

1f(t), ϕ̂
T
2f(t), · · · , ϕ̂T

rf(t), ŷf(t − 1), ŷf(t − 2), · · · , ŷf(t − nd)
]T

∈ Rn,

ϕ̂jf(t) := [−x̂jf(t − 1), · · · ,−x̂jf(t − nj), ûjf(t − 1), · · · , ûjf(t − nj)]
T ∈ R2nj .

By defining and minimizing the quadratic criterion function

J(θ) := E
[∥∥y(t) − φ̂T

f (t)θ
∥∥2

]
,

We can obtain the following extended stochastic gradient algorithm for estimating θ based
on the data filtering (the F-ESG algorithm for short):

θ̂(t) = θ̂(t − 1) +
φ̂f(t)

r(t)
e(t), (9)

e(t) = y(t) − φ̂T
f (t)θ̂(t − 1), (10)

r(t) = r(t − 1) + ∥φ̂f(t)∥2, r(0) = 1. (11)

In order to improve the parameter estimation accuracy of the F-ESG algorithm, we expand
the scalar innovation e(t) ∈ R to an innovation vector E(p, t) ∈ Rp by adopting the multi-
innovation identification theory. Define the innovation vector

E(p, t) :=


y(t) − φ̂T

f (t)θ̂(t − 1)

y(t − 1) − φ̂T
f (t − 1)θ̂(t − 1)
...

y(t − p + 1) − φ̂T
f (t − p + 1)θ̂(t − 1)

 ∈ Rp,

where p represents the innovation length. Referring to the method in [33], we can summa-
rize the data filtering based multi-innovation extended stochastic gradient (F-MI-ESG)
algorithm as

θ̂(t) = θ̂(t − 1) +
Φ̂f(p, t)

r(t)
E(p, t), (12)

E(p, t) = Ŷ (p, t) − Φ̂f(p, t)θ̂(t − 1), (13)
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r(t) = r(t − 1) +
∥∥∥Φ̂f(p, t)

∥∥∥2

, r(0) = 1, (14)

Y (p, t) = [y(t), y(t − 1), · · · , y(t − p + 1)]T, (15)

Φ̂f(p, t) = [φ̂f(t), φ̂f(t − 1), · · · , φ̂f(t − p + 1)]T , (16)

φ̂f(t) =
[
ϕ̂T

1f(t), ϕ̂
T
2f(t), · · · , ϕ̂T

rf(t), ŷf(t − 1), ŷf(t − 2), · · · , ŷf(t − nd)
]T

, (17)

ϕ̂jf(t) = [−x̂jf(t − 1), · · · ,−x̂jf(t − nj), ûjf(t − 1), · · · , ûjf(t − nj)]
T , (18)

ŷf(t) = [−ŷf(t − 1),−ŷf(t − 2), · · · ,−ŷf(t − nd)] d̂(t) + y(t), (19)

ûjf(t) = [−ûjf(t − 1),−ûjf(t − 2), · · · ,−ûjf(t − nd)] d̂(t) + uj(t), (20)

x̂jf(t) = ϕ̂T
jf(t)ϑ̂j(t), (21)

θ̂(t) =
[
ϑ̂T

1 (t), ϑ̂T
2 (t), · · · , ϑ̂T

r (t), d̂T(t)
]T

. (22)

When p = 1, we can obtain the F-ESG algorithm in (9)-(11). That is, the F-ESG
algorithm is a special case of the F-MI-ESG algorithm. The steps of computing the
parameter estimation vector θ̂(t) as t increases are as follows.

1. Initialize and choose p: let t = 1, θ̂(0) = 1n/p0, x̂jf(i) = 1/p0, ûjf(i) = 1/p0 and
ŷf(i) = 1/p0 for i ≤ 0, p0 = 106.

2. Collect the input-output data {uj(t), y(t): j = 1, 2, · · · , r}.
3. Form ϕ̂jf(t) by (18), φ̂f(t) by (17), and form Y (p, t) by (15), Φ̂f(p, t) by (16).
4. Compute E(p, t) and r(t) using (13) and (14).

5. Update the parameter estimation vector ˆθ(t) by (12).

6. Read d̂(t) and ϑ̂j(t) from ˆθ(t) in (22).
7. Compute ûjf(t), ŷf(t) and x̂jf(t) by (20), (19) and (21), respectively.
8. Increase t by 1 and go to Step 2.

4. Example. Consider the following multi-input OEMA system:

y(t) =
B1(q)

A1(q)
u1(t) +

B2(q)

A2(q)
u2(t) + D(q)v(t),

A1(q) = 1 + a11q
−1 + a12q

−2 = 1 − 0.23q−1 − 0.12q−2,

B1(q) = b11q
−1 + b12q

−2 = 0.78q−1 + 0.45q−2,

A2(q) = 1 + a21q
−1 + a22q

−2 = 1 + 0.26q−1 + 0.26q−2,

B2(q) = b21q
−1 + b22q

−2 = 0.46q−1 + 1.00q−2,

D(q) = 1 + d1q
−1 + d2q

−2 = 1 + 0.06q−1 + 0.08q−2.

The parameter vector to be estimated is

θ = [a11, a12, b11, b12, a21, a22, b21, b22, d1, d2]
T (23)

= [−0.23,−0.12, 0.78, 0.45, 0.26, 0.26, 0.46, 1.00, 0.06, 0.08]T. (24)

In simulation, the inputs {u1(t), u2(t)} are taken as two uncorrelated stochastic signal
sequences with zero mean and unit variance, and {v(t)} as a white noise sequence with
zero mean and variance σ2 = 0.102. We apply the MI-ESG algorithm and the F-MI-ESG
algorithm to estimating the parameters of this system. The parameter estimates and
errors are shown in Table 1 with p = 10, and the parameter estimation errors δ versus t
are shown in Figure 1 with p = 1, 2, 5, 10.

From the simulation results in Table 1 and Figure 1, we can draw the conclusions that
the parameter estimates given by the F-MI-ESG algorithm have higher accuracy than
those given by the MI-ESG algorithm in the same situation. Increasing the innovation
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Table 1. The MI-ESG and F-MI-ESG parameter estimates and errors

Algorithms t a11 a12 b11 b12 a21 a22 b21 b22 d1 d2 δ (%)

MI-ESG 500 −0.2268 −0.1206 0.7822 0.4562 0.2646 0.2601 0.4565 0.9903 0.1259 −0.1828 18.1441
1000 −0.2251 −0.1212 0.7776 0.4537 0.2598 0.2593 0.4590 0.9898 0.1253 −0.1793 17.9049
2000 −0.2225 −0.1202 0.7784 0.4520 0.2594 0.2580 0.4599 0.9941 0.1248 −0.1773 17.7628
3000 −0.2232 −0.1214 0.7789 0.4517 0.2585 0.2583 0.4612 0.9987 0.1245 −0.1761 17.6701

F-MI-ESG 500 −0.2038 −0.0974 0.7685 0.4495 0.2682 0.3076 0.4383 0.9383 0.0280 0.0269 7.2665
1000 −0.2042 −0.1000 0.7707 0.4496 0.2717 0.3051 0.4483 0.9568 0.0252 0.0327 6.2654
2000 −0.2019 −0.0987 0.7755 0.4494 0.2725 0.3045 0.4540 0.9709 0.0222 0.0320 5.9898
3000 −0.2020 −0.0994 0.7772 0.4495 0.2716 0.3042 0.4562 0.9796 0.0233 0.0332 5.7072

True values −0.2300 −0.1200 0.7800 0.4500 0.2600 0.2600 0.4600 1.0000 0.0600 0.0800

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4
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0.6

F−ESG (F−MI−ESG, p = 1)

F−MI−ESG, p = 2
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      t

   
   

δ

Figure 1. The estimation errors δ versus t

length p can improve the parameter estimation accuracy of the F-MI-ESG algorithm, that
is we can obtain highly accurate estimates as the innovation length p increases.

5. Conclusions. By means of the filtering technique and the multi-innovation identifi-
cation theory, a filtering based multi-innovation extended stochastic gradient algorithm is
proposed. The simulation results show that the proposed F-MI-ESG algorithm provides
more accurate parameter estimates than the MI-ESG algorithm for the same innovation
length. In the future, the proposed algorithm in this paper can be extended to nonlinear
models with colored noise, state space systems, sensor networks and feed back nonlinear
systems.
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