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ABSTRACT. Lock is widely used in multi-threaded programs to tune memory access from
different threads. However, programming correctly with lock is not an easy task. Achiev-
ing good scalability is even harder. This paper proposes an Efficient Lock Elision Runtime
System (ELERS) for coarse-grained lock in multi-threaded programs. The goal of EL-
ERS is to achieve fine-grained performance at coarse-grained effort. Programmers can
use coarse-grained lock to develop multi-threaded programs for simplicity while relying on
ELERS to achieve the performance of fine-grained lock. The key idea of ELERS is to
aggressively let multiple threads enter the same critical section to perform a speculative
ezecution. By focusing on coarse-grained lock in multi-threaded programs, ELERS shows
great potential to accelerate multi-threaded programs (30% speedup on red-black tree in
Linuz kernel, /5% speedup on splash2 benchmarks and 27% speedup over state-of-the-art
lock elision system,).
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1. Introduction. Multi-threaded programs have become the mainstream of applications
on today’s fast developing multi-core architectures. However, multi-threaded program
is notoriously hard to develop. Not only is it difficult to write correct multi-threaded
programs, also it is a challenge to make them scale [1]. Most multi-threaded programs use
lock to synchronize threads on accessing shared data. There are two schemes of locking:
coarse-grained locking and fine-grained locking. On the one hand, coarse-grained lock
(e.g., using a global lock for a list) is easy to use but it generally hinders the performance
and scalability. On the other hand, fine-grained lock (e.g., using a lock in each node in
a list), as being designed and applied carefully, offers better performance but it is often
prone to error (e.g., deadlock). Thus, a locking scheme which is at coarse-grained effort
but can offer fine-grained performance is desirable.

This paper proposes an Efficient Lock Elision Runtime System (ELERS) for coarse-
grained lock in multi-threaded programs. ELERS dynamically detects and optimizes
coarse-grained locks in multi-threaded programs in a transparent way. In detail, for any
critical section protected by coarse-grained lock, ELERS aggressively lets multiple threads
enter the same critical section to perform a speculative execution. We perform conflict
detection in the critical section. If we find any conflicts, some threads have to roll back.

The spirit of ELERS is similar to that of transactional memory [2] and optimistic con-
currency [3]. However, certain key insights differ. Compared with transactional memory,
the semantics lock offers are different from the semantics of transactional memory. Pre-
vious work [4] shows that directly transferring lock sets into transactions (atomic blocks)
could introduce bugs, which is mainly because the critical sections defined by lock sets
only exclude other critical sections defined by the same lock set, while in transactional
memory all transactions exclude each other. Compared with previous optimistic con-
currency (e.g., OPTIK) work [3], ELERS works with common lock mechanism provided
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in pthread lib while previous optimistic concurrency work provides new programming
interface and requires altering the source programs into another pattern.

Above all, with ELERS, we can write multi-threaded programs easily with coarse-
grained locks (less programming effort) and achieve fine-grained performance (better
performance). We can also optimize the performance of current legacy multi-threaded
programs with ELERS in a transparent way. The key insight and contribution of ELERS
is: we identify that only coarse-grained locks can be optimized into an optimistic pattern
to gain performance benefit. For fine-grained locks, speculative execution would only
introduce overhead (due to intense conflict of speculative execution). Based on this, we
introduce a runtime system to identify coarse-grained locks and only transfer those locks
into optimistic pattern. Experimental results show that compared with previous software
lock elision work [5], ELERS achieves 27% speedup thanks to the precise identification of
coarse-grained locks.

The rest of this paper is organized as follows. In Section 2 we introduce the problem of
locking and compare it with speculative locking (our ELERS). Section 3 gives the design
and implementation of ELERS. We evaluate ELERS in Section 4 and make conclusion in
Section 5.

2. The Problem of Locking. When developing multi-threaded programs, one should
determine which part of data is protected by which lock, as well as the granularity of the
lock. Figure 1 shows an example of developing a simple linked list under two different
schemes. Figure 1(a) shows the coarse-grained locking scheme where we use a global lock
to protect the whole linked list. If a thread wants to access the linked list, it must gain
the global lock first. One can easily tell that this scheme is definitely of low performance
and scalability and we should avoid such design. However, such coarse-grained design
widely exists in current legacy multi-threaded programs, even in the Linux kernel (for
example, the Linux kernel manages the virtual space of each process using a red-black
tree, which is protected by coarse-grained lock [6]). On the contrast, Figure 1(b) shows
fine-grained locking scheme which is favorable. We store a lock in each node. If a thread
wants to access any node, it first gains the lock for that node. Any two threads accessing
different nodes can run in parallel. However, this fine-grained locking greatly complicates
the program and may introduce bugs. For this simple linked list, two threads performing
inserting in neighboring spaces may cause data corruption [1]. Further version-number
based method should be introduced to guarantee correctness [1].
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F1GURE 1. Locking schemes



ICIC EXPRESS LETTERS, VOL.10, NO.12, 2016 2945

16
14
12
o 10
3 W coarse
o 8
[ .
o 6 fine
A W ELERS-coarse
MW ELERS-fine
2
0 .
1 2 4 8 16
number of threads

FIGURE 2. Performance of different schemes

Figure 2 shows the performance comparison of coarse-grained locking and fine-grained
locking when doing random access-and-modification on a 1000-node list. For coarse-
grained locking, it has no scalability when we increase the number of threads. On the
contrast, fine-grained locking exhibits very good scalability and performance. The gap
between coarse-grained locking and fine-grained locking is our opportunity. Here we also
show our ELERS when it is used to optimize the coarse-grained locking (see ELERS-
coarse in Figure 2) in the linked list. We can see it achieves near similar performance
with fine-grained locking.

Above all; in this section we show that the simplicity of coarse-grained locking and the
performance of fine-grained locking are both what we want. In Figure 2 we demonstrate
that our ELERS has great potential to achieve both.

3. Efficient Lock Elision for Multi-threaded Programs. Figure 2 shows that our
ELERS has great potential to scale up coarse-grained lock. Another important thing
Figure 2 reveals is, for fine-grained locking, ELERS could introduce no benefit but only
overhead (see ELERS-fine in Figure 2). This is because, in fine-grained locking scheme,
parallel accesses have already been well-tuned. Making two threads speculatively enter
the same critical section would most probably result into conflict. Thus in this section,
we mainly introduce our mechanism of indentifying coarse-grained lock in multi-threaded
programs and the whole design and implementation of our ELERS.

Speculative execution with ELERS. Similar to software transactional memory [2]
system, performing speculative execution requires buffering intermediate states for each
thread and committing them at the end of a critical section. In order to achieve this,
we leverage the compiler framework LLVM [7] to perform static analysis on the source
code and insert our own buffering code for each critical section. Generally, our code for
speculative execution is based on the software transactional memory system TinySTM
[2] except for that we only do conflict detection between two transactions that execute
critical sections protected by the same lock (we assign each lock a special version number
to achieve this).

Figure 3 shows our basic idea. We first identify each critical section (enclosed by function
call to pthread_mutex_lock and pthread_mutex_unlock) during compiling time. Then we
alter each memory access to a call into the TinySTM library which will record and buffer
the accesses (stm_write and stm_read in Figure 3). Moreover, in order to start a trans-
action, we replace the original pthread_mutex_lock and pthread-mutex_unlock in pthread
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pthread_mutex_lock{lock 1){
record_version(l);

if (retry < thredshold)
_s:arej !O‘fk I . _s:arej !ogk I ) stm_begin_with_version(l);
shared int a shared int a

- ’ - ’ else

1 |_pthread tex_lock(&l);
pthread_mutex_lock(&l); instrument pthread_mutex_lock(&l); } real_pthread_mutex_lock(&)
a+t; stm_write(a, stm_read(a)+1);
b=a; stm_write(b, stm_read(b}); pthread_mutex_unlock{lock [}
pthread_mutex_unlock(&l); pthread_mutex_unlock(&l); if (retry < thredshold)

N stm_end_with_version(l);

else
real_pthread_mutex_unlock(&l);

}

FIGURE 3. Overview of ELERS

library with our own implementations as shown in Figure 3. In pthread_mutez_lock, we
first assign the transaction a version number which is derived from the lock 1 (the version
number acts as an ID). Then we start a transaction to perform speculative execution
instead of trying to get the lock. Other threads try to gain the same lock to enter critical
section to perform in the same way: they first get the same version number and then
execute stm_begin_with_version(l) to start a transaction. When a transaction ends, it just
has to do conflict detection with other transactions which have the same version number
(this means they want to gain the same lock). In some cases a transaction would always
fail due to intense conflict. To solve this problem we added a fallback path in which all
threads fall back to try to get the lock and enter the critical section serially.

Nesting lock. In a multi-threaded program there may be nested locks. As we con-
verted lock sets into transactions, nested locks are regarded as nested transactions and
run normally with TinySTM [2].

Identifying coarse-grained lock. Our final problem is how to identify a coarse-
grained lock. Our method for this is based on a natural idea: coarse-gained lock
protests more data than fine-grained lock. Threads in a critical section protected
by a coarse-grained lock normally touch a wide range of memory. On the contrast, threads
holding a fine-grained lock always just access a small part of memory and then release
the lock. Based on this observation, our method for identifying coarse-grained lock is as
follows.

(1) First, as discussed before, we have already used LLVM [7] to alter every memory
accesses in each lock set into transactional function calls (stm_read and stm_write in
Figure 3). Hence for each lock set at runtime, we can easily track which part of memory it
protects. We track and maintain this information for each lock at runtime. For example, if
a thread acquires lock [ and then accesses memory a and b, we will record the information
that lock [ is protecting a and b. Then if another thread acquires lock [ and accesses
memory ¢ and d, we will add ¢ and d in the record.

(2) Then the whole execution of our system is described as below (see Figure 4 for
detail): at the beginning of the program, the protecting information of each lock is empty.
Each thread going into a critical section just tries to hold a lock and executes serially.
Then in the critical section we gather the memory access information for the according
lock. If we find a lock is protecting a memory region that is larger than 64 bytes (the size
of a cache line), we will identify that lock as a coarse-grained lock and start speculative
execution of the according critical section (as shown in Figure 4). Here that we choose
the threshold to be 64 bytes is because most fine-gained locking systems organize fine-
gained data that could fit into a cache line for performance reason. However, if a lock
is protecting a larger memory range than this (64 bytes), then the lock is probably a
coarse-grained lock.
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pthread mutex_lock(lock I){
record_version(l);
int grain = get_protected_grain(l);
if (retry < thredshold && grain > certain_grain //this
means lock | is a coarse-grained lock)
stm_begin_with_version(l);
else
real_pthread_mutex_lock(&l);

_shared lock |
_sharedinta, b

pthread_mutex_lock(&l); ———|
stm_write(a, stm_read(a)+1);
stm_write(b, stm_read(b));
pthread_mutex_unlock(&I);

F1GURE 4. Focusing on coarse-grained lock

4. Experimental Results. We introduce a runtime system ELERS which transfers the
coarse-grained lock set into optimistic transactions. In this section we mainly evaluate
our ELERS on some legacy multi-threaded benchmarks to check its ability to accelerate
them. We also show results on the red-black tree structure adopted in current Linux
kernel [6] to show ELERS could be adopted to accelerate the kernel on managing virtual
spaces of processes. For the red-black tree, we randomly insert 1000 nodes with different
number of threads. Also we compare our work with previous lock elision work SLE [5] to
show our advantages of just focusing on coarse-grained lock.

We conduct our experiment on a 32 core platform running Linux 3.10. The LLVM
framework we use is of version 3.9.

Figure 5 shows the results. First, as shown in Figure 5(a), both our work and previous
SLE achieves certain scalability on red-black tree. The coarse in Figure 5(a) means just
using a global lock to protect the whole tree. Note that our ELERS performs almost the
same with SLE because for coarse-grained red-black tree, there is only one lock that needs
to be altered into speculative version. Thus we cannot show our advantage of identifying
coarse-grained lock. However, our ELERS still achieves 30% speedup (averagely) over
coarse-grained version, showing great potential to accelerate current Linux kernel.
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F1GURE 5. Experimental results

Second, Figure 5(b) shows the experimental results on benchmarks from splash2 [8]
benchmark suite. Here all the benchmarks are executed with 8 threads. We show the
speedup over sequential version. For all benchmarks, the original versions (base in Fig-
ure 5(b)) could achieve 3-5X speedup over sequential version. Our ELERS could further
achieve 45% average speedup due to our optimization of coarse-grained lock. Compared
with SLE, our ELERS could improve 27% performance thanks to our precise detection of
coarse-grained lock.
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Above all, the experimental results from Linux kernel red-black tree and splash2 bench-
marks show that our ELERS could improve the performance of multi-threaded programs
in a transparent way, showing great potential to facilitate multi-threaded programming.

5. Conclusions. This paper introduces an Efficient Lock Elision Runtime System (EL-
ERS) for multi-threaded programs. ELERS aggressively lets multiple threads enter the
same critical section to perform a speculative execution. By focusing on coarse-grained
lock in multi-threaded programs, ELERS shows great potential to accelerate multi-threa-
ded programs (30% speedup on red-black tree, 45% speedup on splash2 benchmarks and
27% speedup over state-of-the-art lock elision system) as well as facilitating concurrent
programming. Future work will mainly be reducing the roll backs by analyzing the mem-
ory access patterns of each thread dynamically.
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